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Non-monotonic frictional behavior in the
lubricated sliding of soft patterned surfaces

Arash Kargar-Estahbanati and Bhargav Rallabandi *

We study the lubricated contact of sliding soft surfaces that are locally patterned but globally cylindrical, held

together under an external normal force. We consider gently engineered sinusoidal patterns with small slopes.

Three dimensionless parameters govern the system: a speed, and the amplitude and wavelength of the pattern.

Using numerical solutions of the Reynolds lubrication equation, we investigate the effects of these dimensionless

parameters on key variables such as contact pressure and the coefficient of friction of the lubricated system. For

small pattern amplitudes, the coefficient of friction increases with the amplitude. However, our findings reveal

that increasing pattern amplitude beyond a critical value can decrease the friction coefficient, a result that

contradicts conventional intuition and classical studies on the lubrication of rigid surfaces. For very large

amplitudes, we show that the coefficient of friction drops even below the corresponding smooth case. We

support these observations with a combination of perturbation theory and physical arguments, identifying scaling

laws for large and small speeds, and for large and small pattern amplitudes. This study provides a quantitative

understanding of friction in the contact of soft, wet objects and lays theoretical foundations for incorporating the

friction coefficient into haptic feedback systems in soft robotics and haptic engineering.

1 Introduction

A lubricant, a viscous liquid separating two moving objects in
close contact, plays a vital role in lowering friction and extending
the lifespan of engineering components.1–3 The growing number
of applications of soft materials in recent years has drawn
renewed interest in ‘‘soft lubrication’’. For fluid-separated soft
objects in close proximity to each other, the pressure due to flow
is sufficiently strong to significantly deform at least one of the
contacting surfaces.4,5 This lets the lubricated film support
external forces and torques.6 This phenomenon holds signifi-
cance in various areas, including the study of soft robotic
grippers,7 prosthetic synovial joints,8 and the interaction
between eyeballs and contact lenses.9 A characteristic feature
of these systems is that the thickness of the separating fluid film
is set dynamically by the relative velocity between the surfaces
(faster motion typically leads to thicker films).

Soft lubricated systems typically reside in one of three distinct
regimes: the ‘‘boundary regime’’, where the lubricant is too thin
to support any load, and most of the load is borne by localized
dry contacts; the ‘‘mixed regime’’, where the lubricant partially
supports the load, but some portion is still carried by dry solid-
to-solid contact; and the ‘‘elastohydrodynamic lubrication’’
(EHL) regime, where a robust film completely separates the
contacting surfaces. The transition to the EHL regime typically

occurs when the film thickness is 3–8 times the typical surface
roughness, and may involve surface instabilities.10 This study
focuses exclusively on the EHL regime, characterized by the
absence of solid–solid contact between lubricated surfaces.11,12

The strong coupling between the elasticity of the contacting
bodies and the flow of the lubricating fluid enables EHL systems to
withstand both normal and tangential forces. However, this con-
nection adds complexity to the analysis of such systems and
typically require numerical methods except under certain limiting
conditions.13,14 In the case of small normal loads, referred to as
‘‘the non-conformal regime’’, the surfaces move with a relatively
thick fluid film, experiencing small deformation.4,15 Conversely, for
large normal forces, the geometry resembles classical Hertzian
contact, separated by a thin fluid film in what is termed the
‘‘conformal contact regime’’.16,17 There may be a transition between
the two regimes depending on the flow speed. Additionally, it is
common to use different elastic formulations for the soft material
depending on the thickness of the soft substrate relative to the flow
length scale. The widely-used Winkler model is best suited to thin,
compressible soft coatings,4,16 while for very thick materials, it is
typical to treat the soft material as an elastic half-space.18,19 More
sophisticated analyses for intermediate thickness bridge the gap
between these limits.20,21 In experimental studies, atomic force
microscopy and a non-contacting probe have been used to measure
EHL forces,22,23 while optical interferometry have characterized
fluid film thickness and soft surface deformation profiles.5,24

Many studies have focused on the measurement of effective
friction force between lubricated soft surfaces. Previous studies
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have observed that altering surface architecture, for example,
by adding geometric micropatterns25–28 or periodically modify-
ing stiffness,29–31 profoundly influences tribological perfor-
mance of soft lubricated contacts. Additionally, soft surfaces
in nature often exhibit roughness at the nanoscale,32 under-
scoring the importance of understanding frictional behavior of
lubricated uneven surfaces in fields like soft robotics,33 and
haptic engineering.34 Experiments have found that surface
asperities affect the shape of the lubricating film35,36 as well
as the transmission of forces.7,37 Peng et al.,7 in particular,
showed that the friction between soft surfaces with engineered
surface patterns appears to depend non-monotonically on the
sliding speed. Wu et al. (2022)31 undertook a numerical study
for surfaces with periodically varying stiffness, correlating the
additional friction force with increased energy dissipation
compared to smooth surfaces. However, a systematic computa-
tional and theoretical analysis of the effect of geometrical
patterns of the EHL films and force transmission is lacking.

In this study, we investigate the elastohydrodynamic lubri-
cation of surfaces with engineered geometric patterns by devel-
oping numerical solutions to the coupled fluid-elastic problem.
Focusing on sinusoidal patterns on a two-dimensional cylindrical
contact geometry, we study the effect of sliding speed, the wavelength
and amplitude of the pattern. Of particular interest is the effective
coefficient of friction (the ratio between the EHL drag and the applied
normal load). Our findings show that for small pattern amplitudes
the friction increases with the square of the amplitude, while for very
large amplitudes, the friction coefficient decreases as amplitude
increases. We explore the physical underpinnings of this non-trivial
observation using scaling analysis and perturbation theory.

2 Problem formulation
2.1 Setup and governing equations

We consider the sliding motion of a patterned rigid cylinder
pressed into a rigid plane coated with an elastic material of

thickness cs under a normal load L (per length of the cylinder).
The two surfaces are submerged in a Newtonian fluid with
viscosity Z, and the bottom surface translates from left to right
with velocity vp, as depicted in Fig. 1. We assume the coating to
be linear elastic with shear modulus G and Poisson’s ratio n.
Relative motion establishes a layer of fluid with thickness h(x)
between the bodies, forming a ‘‘lubricated contact’’. The cylinder
radius R is considerably larger than the fluid film thickness h(x).
We also focus our attention to sinusoidal patterns of amplitude
b/2 and half-wavelength a, though more general patterns have
been studied in experiments and modeling efforts.7,32,36

The flow is assumed to be incompressible and the effects of
inertia are assumed negligible. We further consider gently varying
patterns such that b { a. Thus, we describe the flow using
lubrication theory, where the fluid velocity in the thin film is

vx ¼
1

2Z
@p

@x
ðzþ dÞðzþ d� hÞ þ vp 1� zþ d

h

� �
; (1)

where p(x,t) is the fluid pressure and d(x,t) is deformation of the
elastic coating (positive when the coating is depressed). Integrat-
ing (1) across the fluid gap and applying the conservation of mass
leads to the Reynolds lubrication equation for the pressure,38

@

@x

h3

Z
@p

@x
� 6vph

� �
¼ 12

@h

@t
: (2)

The film thickness h(x,t) is a function of deformation d(x,t) and
geometry of the pattered cylindrical surface. As the surfaces are
pressed together, the nominal cylindrical surface penetrates the
coating a distance c o cs. Using the standard parabolic approxi-
mation of the cylinder, valid around the central axis (x = 0), the top
surface is at a location z = htop(x) = x2/(2R) + (b/2)cos(px/a) �c,
while the surface of the deformed elastic coating is at z = �d(x,t).
Thus, the film thickness is

hðx; tÞ ¼ x2

2R
þ b

2
cos

px
a
� cþ dðx; tÞ: (3)

We note that the ‘‘penetration depth’’ c depends on the sliding
speed and is determined dynamically as part of the solution. It is
positive for static ‘‘dry’’ contact and small sliding speeds
(as shown in Fig. 1) and may become negative at large speeds,
corresponding to a cylinder that sits ‘‘raised above’’ the coating
with a clearance between the undeformed surfaces. We note that
for (2) to be valid, the surface profile must vary gently (b { a). We
also focus exclusively on the EHL regime (fully separated surfaces)
and so implicitly assume that the scales of the surface patterns are
much greater than any nanoscale surface roughness.

The deformation d(x,t) is related to the fluid pressure p(x,t)
via the elastic response of soft substrate. We focus here on thin

compressible elastic coatings of thickness ‘s �
ffiffiffiffiffiffiffiffiffi
Rjcj

p
, which

have recently been realized experimentally.5,39 In these systems,
the surface deformation at any point on the coating is approxi-
mately linear in the local fluid pressure at the same point40

dðx; tÞ ¼ Kpðx; tÞ; where K ¼ ‘sð1� 2nÞ
2Gð1� nÞ (4)

is the Winkler elastic compliance. The Winkler approximation

Fig. 1 Sketch of the geometry and coordinates; a patterned surface with
asperities is submerged in a fluid and pressed into a deformable soft
coating, which is moving to the right. The dashed line represents the
original, undeformed position of the soft coating.
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(4) is formally valid when the deformation is small compared
with thickness of the material, which in turn is smaller than the
wavelength of the pattern (d{ cs { a). The maximum deforma-
tion is set by the penetration depth c in the limit of dry contact.
Previous work has shown that the combination of the Winkler
approximation and lubrication theory is in good quantitative
agreement with experiments with smooth cylinders of centi-
metric radii.5,39,41 We therefore anticipate that the inclusion of
gentle surface undulations in the modeling framework, as is
done here, will yield similarly accurate quantitative insights
under similar experimental conditions. Furthermore, the Wink-
ler approximation (with an appropriate choice of K) often
provides qualitatively similar results to more sophisticated elas-
tic descriptions in coupled fluid-elastic systems,16,42 and serves
as a useful model in a rather wide range of soft matter systems.43

Subject to vanishing condition for pressure far outside the
film (p(�N) = 0), eqn (2) and (3) yield a system of equations for
p(x,t) and h(x,t). In addition, the penetration depth c must be
determined self consistently such that the stress of the flow
counteracts the applied normal load (per length) L,

L ¼
ð1
�1

pdx: (5)

The system of eqn (2)–(5), once solved simultaneously, yield the
pressure p(x,t), film thickness h(x,t) and penetration depth c in
terms of vp, L, and the mechanical and geometrical properties
of the system.

In the static limit with vp = 0, the fluid drains from the gap
between the contacting surfaces, resulting in h(x,t) = 0. Thus,
eqn (3) becomes independent of the lubrication eqn (2). This
scenario, known as ‘‘dry contact’’, requires solving (3)–(5)
simultaneously to determine pressure p(x) and penetration
depth c (see ref. 40 for details). We later use the dry contact
problem to evaluate the quasi-static limit, where the relative
velocity is small, and the fluid film is extremely thin.

2.2 Non-dimensionalization

We rescale the governing equations before solving the problem,
using the ‘‘dry’’ static contact problem in the smooth limit (b = 0)
to identify characteristic length and pressure scales. This limit
admits an analytic solution. The two surfaces make contact in
the region � c o x o c, where

‘ ¼ 3LR‘s
4G

1� 2n
1� n

� �1=3

(6)

is the half-length of static contact. The contact pressure distribu-
tion in this limit is

pðxÞ ¼ 3L

4‘
1� x2

‘2

� �
smooth; dryð Þ: (7)

Thus, in the dry, smooth limit, the total contact length is 2c, the

maximum pressure is
3L

4‘
, and the vertical length scale (which

sets the magnitude of c) is c2/2R. We use these scales to define

dimensionless quantities (denoted with overbars) as follows:

�x ¼ x

‘
; �h ¼ h

‘2=ð2RÞ; �c ¼ c

‘2=ð2RÞ; �p ¼ p

3L=4‘
: (8)

Substituting these scales into the Reynolds equation identi-
fies a dimensionless velocity

l ¼ 32ZvpR2

L‘2
¼ 219=3

32=3
ZvpR4=3

L5=3‘
2=3
s

Gð1� nÞ
1� 2n

� �2=3

: (9)

In general, transient effects may be important in the study
of EHL film formation between textured surfaces.25–27 In the
present setup, the bottom surface is planar when undeformed,
so the system admits a steady state in the reference frame of the
cylinder (see Fig. 1). We focus on this steady state, where the
system of governing eqn (2)–(5) rescale as

@

@�x
�h3
@�p

@�x
� l�h

� �
¼ 0; (10a)

�h �xð Þ ¼ �pþ �x2 þ b
2
cos

p�x

a
� �c; (10b)

ð1
�1

pdx ¼ 4

3
; (10c)

where b = 2Rb/c2 and a = a/c are rescaled pattern amplitude and
half-wavelength, respectively. The condition of gentle surface
variation—previously noted—translates into b { aR/c in
terms of dimensionless parameters. In this study, we focus
on pattern amplitudes comparable to the dry penetration
depth, i.e., b = O(1).

We solve the system of equations (10) by initially guessing a
value for penetration depth %c. The eqn (10a) and (10b), which
yield a second-order nonlinear ODE subjected to %p(�N) = 0, are
solved using the shooting method so that the pressure decays
to zero at both ends of the computational domain. Due to the
multiple scales of the problem, precise resolution is needed in
regions of high curvature, while other regions can be resolved
with a coarser grid. We therefore employed MATLAB’s ODE45
solver, which automatically generates a non-uniform grid based
on error tolerance and solution smoothness. The next section
demonstrates that the solution profile supports this approach.
At this stage the solution only satisfies the flow eqn (10a), while
the normal load balance (10c) is not yet met. Therefore, we
iterate on %c (re-solving the lubrication problem each time) to
satisfy (10c) within a small tolerance, completing a solution to
the system (10) for a prescribed set of l, a and b.

3 Results and discussion
3.1 Pressure and film thickness

We examine solutions of the system of eqn (10), the rescaled
pressure (p/(3L/4c)), and the rescaled film thickness (h/(c2/2R))
across a range of dimensionless parameters l, a, and b. Fig. 2(a)
and (b) plots the fluid film thickness ( %h) and pressure (%p) as
functions of the horizontal coordinate (%x) for different values of
normalized speed (l). The pattern amplitude b and the rescaled
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pattern wavelength a are constant throughout Fig. 2. The
variables %p and %h are directly derived from the numerical
solution of (10), and the precision of their calculation deter-
mines the accuracy of our results. Thus, a mesh study was
performed to assure that the final solution is converged. Fig. 2
confirms that the problem has multiple scales, necessitating a
non-uniform mesh to accurately resolve the profile. For small l,
representing a small speed or a large normal load, the fluid film
thickness and pressure distribution are strongly influenced by
the amplitude. In particular, we see localized regions with large
pressure and very thin films (small %h), which correspond to the
regions of contact inherited from the static problem. These are
separated by ‘‘gaps’’’ where the fluid film is much thicker. For
large speeds (l c 1) by contrast, %h significantly exceeds b.
Consequently, the solution to the elastohydrodynamic problem
predominantly mirrors the smooth-cylinder solution, augmen-
ted by relatively minor fluctuations resulting from the sinusoi-
dal protrusions. The independence of the solution for large
values of b is also seen in Fig. 2(c), which plots the penetration
depth %c versus the speed l for different b.

3.2 Coefficient of friction

As noted earlier, the primary objective of this study is to
understand the effect of pattern amplitude on the coefficient
of friction m, defined as the ratio of the EHL drag D to the
applied load L. From solutions of the pressure and film thick-
ness, m is found as

m ¼ D

L
¼ 1

L

ð
�p@h
@x
� Z

@v

@z

����
z¼htop

 !
dx (11a)

¼ ‘

2R

Ð1
2

�h
@�p

@�x
� l
6�h
þ @

�htop
@�x

�pd�x

4=3
; (11b)

where (11b) uses rescaled variables. We note that since the load
is held constant throughout in the present formulation (inde-
pendent of the parameters a, b and l), the coefficient of friction
is simply a rescaled version of the drag.

We first study the effect of the pattern amplitude and
wavelength on the friction coefficient. The wavelength of the

protrusions 2a evidently affects the spatial structure of the
pressure and film thickness distributions (Fig. 2). However,
we find that the wavelength has only a weak effect on the
friction coefficient, particularly when it is much smaller than
the contact length (a { 1), as illustrated in Fig. 3(a). A similar
independence of forces on the wavelength of surface patterns
was shown to hold (using formal asymptotic arguments and
validated numerically) in the context of rigid surfaces with
sinusoidal undulations.44 Later, we offer a rationalization of

Fig. 2 (a) Dimensionless film thickness ( %h) and (b) dimensionless pressure ( %p) plotted against the dimensionless horizontal coordinate (%x) for various
values of normalized speed l = 5, 0.5 and 0.05. b = 1 for both (a) and (b); and (c) dimensionless penetration depth ( %c) versus dimensionless speed (l) for
various values of dimensionless pattern amplitude b = 0, 0.5, 1.0 and 2.0. Throughout the figure, a = 0.1.

Fig. 3 (a) Friction coefficient (m) versus dimensionless speed (l) for
different values of dimensionless wave length (a), b = 0.2 (b) Friction
coefficient (m) versus dimensionless speed (l) for different values of
amplitude (b), a = 0.1.
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this independence using scaling and symmetry arguments,
accounting for deformations. We note that the condition of
small wavelength is natural in the context of ‘‘surface textures’’,
whereas the case a = O(1) modifies the cylindrical shape across
the entire lubricated film region and is not the regime of
interest here. We thus work in the small-wavelength regime
throughout the paper, focusing on the dependence of m on the
remaining dimensionless parameters, l and b.

Fig. 3(b) studies the influence of dimensionless speed l on
friction coefficient for different values of the rescaled surface
amplitude b. For a smooth cylinder at small l, a balance
between the O(1) pressure gradient, determined by dry contact,
and the viscous stress in (10a), suggests a film thickness scaling

of �h
�
0 / l1=2 (see also ref. 42). By substituting the film thickness

and pressure scaling into (11b), the friction coefficient is found to
scale as m p (c/2R)l1/2. This scaling with l is consistent with the
numerical results for b = 0, shown in Fig. 3(b). As the pattern
amplitude b increases from zero at a fixed speed l, the friction
coefficient increases, aligning with both experimental
observations7 and intuitive expectations. However, the opposite
is observed for sufficiently large b – the coefficient of friction
decreases with increasing amplitude. This non-monotonic depen-
dence of the friction on the pattern amplitude is most noticeable
for small and moderate speeds l, where the deformation of the
solid is comparable to (or greater than) the film thickness;
compare the curves for b = 0.8 and b = 0.5 in Fig. 3(b). Surpris-
ingly, for very large b, the coefficient of friction can drop to values
even below the smooth limit (b = 5 curve in Fig. 3(b)).

To illustrate this counter-intuitive behavior more clearly, in
Fig. 4(a) we plot the rescaled friction coefficient m(2R/c) versus
amplitude b. Starting from a smooth surface (b = 0), increasing
amplitude b first results in an increase in the friction coeffi-
cient (see also Fig. 4(b)). For a fixed l, the maximum friction
occurs at critical value b = bc, indicated by star symbols in

Fig. 4(a). Increasing the pattern height beyond bc lowers the
friction coefficient. Eventually, m falls below its smooth limit. As
l increases, the value of bc increases (Fig. 4(a) and (c)), while the
height of the maximum itself diminishes. These features seem
to persist for larger l but become less prominent. We analyze
these features in the following sections, focusing separately the
limits of large and small values of either b or l.

3.3 Friction at low speeds: scaling analysis

We first consider the limit of small l, which displays the strongest
dependence of m on b. For small b, it is useful to perturb around
the smooth solution, where the film thickness is %h0(%x) and has a

characteristic scale �h
�
0. For b� �h

�
0, we expect that the film thick-

ness takes the shape �h �xð Þ ¼ �h0 �xð Þ 1þ sSþ s2S2 þO s3
� �� �

,

where s ¼ b=�h
�
0 is a small parameter (representing the ratio of

the pattern amplitude to the film thickness) and S �xð Þ is a
sinusoidal function of O(1) amplitude and O(a) { 1 wavelength.
We now consider the contribution to the shear stress to the drag,

which scales as
Ð
l
�

�hd�x. We expand the integrand in powers of s

as
Ð
l
�
h0 1þ sSþ s2S2
� �

dx (note that we omit prefactors in
front of the powers of s since the argument is at the level of
scaling). The terms linear in s are also linear in the rapidly
oscillating sinusoid S �xð Þ, so it integrates to zero. The first nonzero
amplitude contribution results from the term involving O s2S2

� �
,

which on integration yields a term of O(s2) that is independent of a
(this independence occurs because the integral picks out the zero-
wavenumber Fourier component of S2). A similar symmetry
argument also applies to terms involving the pressure. Thus, we
expect that the coefficient of friction for small b takes the form

m � m0 1þ k
b

h
�
0

 !2
0
@

1
A for b� h

�
0; (12)

Fig. 4 (a) Friction coefficient versus amplitude (b) for different values of dimensionless speed l = 0.05, 0.2, 0.5, 2.0. Stars represent the maximum friction
at each speed. (b) Difference between the friction coefficients in the rough and smooth cases (m � m0) for small pattern amplitude b { 1. The solid curve
shows the numerical results, while the dashed curve represents a scaling analysis. (c) The critical pattern amplitude bc (maximizing friction) grows as a
function of the speed l. Dashed lines show predicted scaling behaviors at small and moderate speeds.
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where m0 is the smooth (b = 0) limit, and the prefactor k results

from the detailed integration. As noted earlier in the text, �h
�
0 / l1=2

and m0 p (c/2R)l1/2. Substituting these expressions into (12), we
expect that the friction coefficient for small b and small l
behaves as

m � ‘

2R
k1l1=2 þ k2b2l�1=2
	 


for b� l1=2 � 1; (13)

for O(1) constants k1 and k2. The first term represents the smooth
limit, while the second is the leading effect of the pattern
amplitude. The difference between the rough and smooth friction
coefficients scales as b2 for small b, in agreement with numerical
calculations (Fig. 4(b)).

We now analyze the scaling behavior for large amplitude
(b c 1), still considering small speeds (l { 1). For large b, the
dry contact problem is significantly different from the smooth
case. The contact between the two surfaces is no longer con-
tiguous, and is instead made up of n isolated contact regions,
where the individual protrusions locally deform the soft sub-
strate. These contact regions are separated by gaps between the
protrusions (see Fig. 5). For large b, the contact regions are

relatively narrow and have dimensionless widths �‘f � a, while

the gaps have widths of �‘f ¼ O að Þ. When motion is initiated,
the contacting regions become lubricated and support thin
fluid films, while the gap regions remain largely unchanged, as
seen in Fig. 5(a). To understand the contributions of the two
kinds of regions on the force, we define the cumulative drag
and lift functions, respectively,

D �xð Þ ¼
ð �x

�1

1

2
�h
@�p

@�x
� l
6�h
þ @

�htop
@x

� �
ds (14)

L �xð Þ ¼
ð �x

�1
�pds; (15)

where the integrands are functions of the ‘‘dummy’’ spatial
variable s. Note that by definition D 1ð Þ ¼ D and L 1ð Þ ¼ 4=3.

Fig. 6 shows the accumulation of drag and lift forces in both
the film and gap regions for l = 0.05, b = 4. It is clear that the

drag is accumulated in the n thin films of length �‘f corres-
ponding to initially dry contact. These are regions of high shear
stress (due to thin films) whereas the gaps have much thicker

Fig. 5 (a) A zoomed-in plot of the film thickness for b = 1.6 and l = 0.05,
highlighting the film and gap regions. (b) Dimensionless pressure %p versus
dimensionless horizontal coordinate %x for the b = 4 and l = 0.05, the
corresponding dry contact, and the dry smooth contact.

Fig. 6 Plot of cumulative dimensionless forces: (a) drag force and (b) lift
force in blue, together with film thickness %h in red as a function of
dimensionless horizontal coordinate (%x) for l = 0.05 and b = 4.0. The plots
feature two vertical axes: the left axis indicates the cumulative integral
values, while the right axis displays the dimensionless film thickness %h.
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films and thus much lower stress. In contrast to the drag, the lift
is accumulated gradually across the entire ‘‘contact region’’ of
dimensionless length �‘f � 1, encompassing both gap and film
regions. Since the films are much narrower than the gaps, most
of the lift is therefore supported by the pressure in the gaps.
Using (5) to balance normal stresses with the applied load
suggests a pressure scale of O(L/c). In dimensionless terms, we
thus expect %p = O(1) and d%p/d%x = O(1) for the lubricated problem.
We verify this conclusion by plotting the pressure for b = 4 and
l = 0.05 in Fig. 5(b). Contrary to the corresponding dry contact
where the pressure is concentrated in the contact regions, the
pressure in the lubricated patterned case remains relatively close
to the smooth problem, with smaller fluctuations in the thin-
film regions. We posit that this is due to the continuous fluid
film, which distributes the pressure uniformly due to continuity,
requiring a constant fluid flux through the system.

We now use (2) along with the conclusion d%p/d%x = O(1) to
estimate the film thickness as %h B l1/2, valid in the thin film
regions. Referring back to (11), it is easy to see that all three stress
contributions in the integrand scale as l1/2 in the film regions.
Recalling that the drag force is mostly accumulated in n thin-film

regions, each of width �‘f (cf. Fig. 6(a)), we conclude that the drag

force scales as l1=2n�‘f . Referring back to Fig. 5(b), we see that the

number of teeth in contact n and the length of the flat regions �‘f in
the lubricated problem are determined by the dry contact features.
In the appendix, we show using scaling arguments that the dry

contact is characterized by n B b1/8/a, and �‘f � ab�3=8. Combining
these arguments, we obtain the scaling relation D B l1/2b�1/4. The
coefficient of friction is therefore

m � ‘

2R
l1=2b�1=4; for l� 1; b� 1; (16)

and is validated by numerical results in Fig. 4. Notably, the
prediction is also independent of a, consistent with the numerical
findings shown in Fig. 3(a).

The crossover between the low-b and high-b estimates (13)
and (16) yield an estimate of the critical value bc at which the
friction is maximized at a given speed. For very small b, the
second term of (13) is negligible. Then, the crossover between
the small-b and large-b limits occurs at bc = O(1), independent of
l. This corresponds to pattern heights that are comparable to the
dry indentation depth. For larger b, the second term of (13) starts
to become comparable to, and eventually dominate over, the first
term. Then, comparing the second term of (13) with (16) yields a
crossover at bc = O(l4/9), which grows with l. These scaling
predictions for small and large b are consistent with the bc

obtained from numerical solutions, as seen in Fig. 4(c). As noted
earlier, the film thickness grows as l1/2, so the scaling prediction
bc p l4/9 corresponds to patterns with amplitude approximately
equal to the thickness of the entrained fluid film.

3.4 Friction at high speeds: perturbation theory

For large l, the film thickness increases (Fig. 2(a)), and eventually
becomes much greater than both the elastic deformation and
the pattern amplitude. We thus employ a small-deformation

perturbation expansion in the vein of Skotheim and
Mahadevan,4 but include the effects of the pattern. We outline
the main ideas here, and present a more detailed analysis in
Appendix B. For large l, the rough cylinder floats above the
undeformed surface of the bottom substrate, such that
c becomes large and negative. The ratio of the deformation
scale to the film thickness is L = ZvpK(2R)1/2|c|�5/2, which is
small. Additionally, the pattern amplitude relative to the gap
defines e = b/(2|c|), which is also small. We expand the govern-
ing equations in a perturbation series for small L (Appendix B),
solve the resulting problems numerically (for different
values of e) and compute drag D and lift L forces. Separately,
a small-amplitude expansion of these coefficients identifies

that the drag and lift take the approximate form D ¼
Zvp 2R=jcjð Þ1=2 D0 þ e2D2

� �
and L ¼ LZvp 2R=jcjð Þ1=2 L0 þ e2L2

� �
,

up to corrections of O(L2,e4) where the Di and Li are O(1)
parameter-independent coefficients (Appendix B). The coeffi-
cients D0 ¼ 2p and L0 ¼ 3p=8 correspond to drag45 and lift4 on
a smooth cylinder near a weakly deformable soft surface
and are known analytically. The absence of terms linear in e
(and indeed all odd powers of e) stems from the symmetry of
the problem, as noted in Section 3.3. We then find D2 � 3p=2
and L2 � 3p=2 by fitting the analytic forms for D and L to our
numerical force calculations.

Having obtained forces in terms of the gap height |c|, we
recast the expression for lift in terms of the original ‘‘fixed-
load’’ dimensionless variables to obtain

1

48

l2

�cj j7=2
L0 þ

b2

�cj j2
L2

 !
¼ 1; (17)

which is a nonlinear equation for |%c|. Substituting the small-L,
small-e expressions for D and L, we find after some manipula-
tion that the coefficient of friction is

m ¼ ‘

2R

l D0 þD2
b2

�c2

� �
8�c1=2

: (18)

Thus, we first solve the nonlinear eqn (17) for %c and then
substitute these values into (18) to obtain a semi-analytic
approximation for the coefficient of friction m. A comparison
of this result with the fully numerical calculation is depicted in
Fig. 7 for different values of l and b. As evident from Fig. 7(a),
the results of (18), depicted by dashed lines, are in quantitative
agreement with the numerical results at large l. Moreover, the
semi-analytic solution provides a reasonably accurate qualita-
tive prediction at moderate speeds (l E 10).

Furthermore, it is clear from (17) and (18) that the leading
effects of pattern on m scale with b2. To examine the effect of
amplitude on the friction coefficient, we subtracted the friction
coefficient of the smooth problem, m0, from the total friction
coefficient m, and compared the higher-order terms in Fig. 7(b)
at fixed l. The b2 scaling (dashed curve) is evident in the figure,
with analytical results showing good agreement with numerics
up to b E 10.
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4 Conclusions

We have studied the lubricated contact of a patterned curved
surface on a soft coated substrate, assuming a local Winkler-
type elastic description. The model is governed by three
dimensionless parameters: a, the dimensionless wavelength
of the patterns; b, the dimensionless pattern amplitude; and
l, the dimensionless relative speed of the contacting surfaces.
Numerical solutions and symmetry arguments show that the
effective (lubricated) coefficient of friction is insensitive to
variations in a for small a.

An interesting and nontrivial finding is that the coefficient
of friction depends non-monotonically on the pattern ampli-
tude at fixed speeds. For small amplitudes, the friction coeffi-
cient grows from the smooth case proportional to b2, which we
understand using symmetry arguments. For large pattern
amplitudes, the friction coefficient decreases as b�1/4, even-
tually becoming lower than even the smooth limit. We under-
stand this behavior for small speeds by analyzing the contact
geometry established in the ‘‘dry’’ static limit. While much of

the drag is accounted for by thin films, the applied load is
counteracted by the spaces in between the films. At larger
amplitudes, the fraction of contact occupied by the films
decreases, leading to lower drag. At much larger speeds, a
greater volume of fluid is entrained leading to thicker films,
and the effects of surface patterns become weaker.

The theoretical and numerical insights provided by this work
reveal interesting and non-intuitive behaviors arising from inter-
actions between fluid flow, elasticity and the multiple length scales
associated with patterned surfaces. Among these is the non-
monotonic dependence of the friction coefficient on the amplitude
of the pattern. This behavior is reminiscent of (albeit distinct from)
the recent experimental observations of ref. 7 where a non-
monotonic dependence of friction on sliding speed was observed
for patterned surfaces, but was absent for smooth surfaces.

The insights identified by this work offer a deeper understand-
ing of the role of surface patterns in the interactions of soft
materials. Future work may employ a more complete elastic
modeling framework, e.g. one valid for bulk elastic materials rather
than thin compressible coatings. One may also consider the effect
of patterns on both surfaces, or the effects of material viscoelas-
ticity, both of which lead to time-dependent dynamics. While we
have focused here on two-dimensional engineered surface patterns
with small slopes, it would be interesting to consider the effects of
more general surface profiles, including three-dimensional pro-
files and nanoscale roughness. The inclusion of such effects
introduces additional physics such as surface instabilities and
intermolecular forces,10 providing opportunity for future modeling
efforts. We envision further development of our findings to more
complex geometric or material configurations, as well their use in
the design of haptic and soft robotic applications.
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Appendix
A Dry contact at large b

As observed in Fig. 5(b), when l { 1, the lubricated problem
inherits certain features from the dry problem, such as the number
of teeth in contact n, the length of flattened regions cf, and the gap
regions cg. Here, we focus on the limit where b is large and study
the scaling of various quantities with respect to a and b.

At dry contact, the teeth ‘‘penetrate’’ into the soft material a
depth c. This sets up two horizontal length scales: a global
‘‘apparent contact’’ length scale (Rc)1/2, and a flattened local
contact scale cf B (rfc)1/2 on each tooth, where rf is the radius of
curvature of the tooth. By taking the second derivative of (3), we

Fig. 7 (a) Rescaled friction coefficient, m(2R)/c, versus the dimensionless
speed, l. Solid lines depict the numerical results, while dashed lines
illustrate the analytical predictions. (b) The deviation of the friction coeffi-
cient from the soft smooth problem, m � m0, presented against the
dimensionless pattern amplitude, b, for a fixed dimensionless speed of
l = 1000. a = 0.6 throughout the figure.
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find that rf B a2/b, so the dimensionless local contact length is
�‘f ¼ ‘f=‘ � að�c=bÞ1=2. The global length scale is spread across n
teeth a distance a apart from each other, so (Rc)1/2 B an, or in
dimensionless terms %c1/2 B an. Additionally, using (10c) and
considering that the load is supported by the flattened contact
regions, we can express �p�‘fn � 1. For a Winkler-elastic solid,
%p B %c. Combining these scaling relations, the geometric
features of dry contact scale with a and b as

�c � b1=4; �‘f � ab�3=8; n � a�1b1=8 (19)

Notably, the product n�‘f � b1=4 (independent of a), which enters
(16). To validate this scaling analysis, Fig. 8 compares n�‘f , the
variable employed in the main text, from (19) with the numer-
ical solution of the dry contact problem, obtained from solving
(10b) with %h = 0, subject to (10c).

B Large-k perturbation expansion

At large l, the film thickness is greater than both the deforma-
tion and the pattern amplitude, making the problem amenable
to a perturbation analysis. Extensively discussed for smooth
surfaces in existing literature,4,42 we adapt this approach to
patterned surfaces. It is convenient to reformulate the problem
in terms of the separation |c| rather than the load, and later
translate back to the fixed-load framework introduced in Sec-
tion 2. The film thickness scales with |c|, setting the horizontal

length scale
ffiffiffiffiffiffiffiffiffiffiffi
2Rjcj

p
. The relevant pressure scale is ZvpR1/2|c|�3/2,

which, through (4), identifies the deformation scale. Normal-
izing variables according to these scales leads to the rescaled
lubrication equation (uppercase letters are dimensionless)

@

@X
H3@P

@X
� 6H

� �
¼ 0: (20)

The fluid film thickness H is expressed in terms of pressure
and geometric parameters as:

HðXÞ ¼ 1þ X2 þ e cos
pX
â

� �
þ LPðXÞ; (21)

where L is the dimensionless deformation, e is dimension-
less pattern amplitude (both defined in Section 3.4),

and â ¼ a=
ffiffiffiffiffiffiffiffiffiffiffi
2jcjR

p
. All three parameters are small in the

asymptotic sense.
We develop a perturbation expansion for L { 1, expanding

pressure as P = P0 + LP1 + O(L2). Substituting into (21) yields

L0 :
@

@X
H0

3@P0ðXÞ
@X

� 6H

� �
¼ 0; (22a)

L1 :
@

@X
H0

3@P1ðXÞ
@X

þ 3H0P0ðXÞ
@P0ðXÞ
@X

� 6P0ðxÞ
� �

¼ 0;

(22b)

where H0 = 1 +X2 + e cos pX/â represents the film thickness of
the corresponding rigid problem (L - 0). We solve (22a) and
(22b) numerically for different e. We use these solutions to
compute drag and lift forces, which (here written as dimen-

sional quantities) take the form D ¼ Zvp 2R=jcjð Þ1=2D eð Þ and

L ¼ Zvp 2R=jcjð Þ1=2L eð Þ, where D eð Þ and L eð Þ are O(1) functions
that result from the numerical computation. Noting that e { 1
for large l we expand these functions as D ¼ D0 þ e2D2 þ 	 	 	
and L ¼ Z L0 þ e2L2

� �
. The coefficients D0 � 2p and L0 � 3p=8

are well-established results in the literature4,45 and correspond
to the smooth problem. A fit to the numerical force computa-
tions determine D2 � 3p=2 and L2 � 3p=2.
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