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Steady streaming from oscillating microbubbles is a powerful actuating mechanism
in microfluidics, enjoying increased use due to its simplicity of manufacture, ease
of integration, low heat generation, and unprecedented control over the flow field
and particle transport. As the streaming flow patterns are caused by oscillations of
microbubbles in contact with walls of the set-up, an understanding of the bubble dy-
namics is crucial. Here we experimentally characterize the oscillation modes and the
frequency response spectrum of such cylindrical bubbles, driven by a pressure varia-
tion resulting from ultrasound in the range of 1 kHz <∼ f <∼ 100 kHz. We find that (i)
the appearance of 2D streaming flow patterns is governed by the relative amplitudes
of bubble azimuthal surface modes (normalized by the volume response), (ii) distinct,
robust resonance patterns occur independent of details of the set-up, and (iii) the po-
sition and width of the resonance peaks can be understood using an asymptotic theory
approach. This theory describes, for the first time, the shape oscillations of a pinned
cylindrical bubble at a wall and gives insight into necessary mode couplings that shape
the response spectrum. Having thus correlated relative mode strengths and observed
flow patterns, we demonstrate that the performance of a bubble micromixer can be
optimized by making use of such flow variations when modulating the driving fre-
quency. C© 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4790803]

I. INTRODUCTION

The use of acoustic waves ranging from audible frequency to ultrasound in microfluidic envi-
ronments (denoted by the term acoustofluidics) has enabled versatile manipulation of fluid, as well
as of micro/nano-sized objects such as particles, bubbles, and cells.1 Ultrasound standing waves
in the MHz range have been used to trap and separate cell/particles2 through acoustic radiation
forces, which can move the suspended particles/cells to different lateral positions within a laminar
stream. Surface acoustic waves (SAWs) of order 100 MHz, which actuate on the fluid as a whole,
have demonstrated several practical applications as well, with examples including cell and droplet
sorting,3, 4 free surface liquid pumping,5 and concentration particles.6 The operation frequency range
of the above mentioned methods must be high enough to have acoustic wavelengths comparable
to the length scale of cell/particle or microdevices, or to generate momentum flux to move the
liquid directly. The potentially undesirable effects are the relatively high power consumption and
temperature rise due to heat generation, which may be a concern for biological samples sensitive to
temperature. In addition, they both require precise fabrication, such as arrangements of interdigitated
structures.3, 4, 6

Acoustic streaming, a classical phenomenon of driving fluid using sound, has found many
useful applications at the microscale over the last decade. As pointed out by other researchers,1, 7, 8 a
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FIG. 1. Schematic of experimental set-up (not to scale): (a) and (b) the side view and top view; (c) a perspective view of the
semicylindrical bubble; (d) a snapshot of the undisturbed bubble (scale bar is 50 μm); (e) coordinate system used to measure
the bubble shape.

distinction must be made between two general types of streaming: one being a result of attenuation of
energy into the fluid during sound propagation (e.g., “quartz wind”) and the second being due to the
Reynolds stresses within a thin boundary layer (known as boundary-induced steady streaming). The
former type of acoustic streaming needs to operate in the MHz range to drive steady currents in water.9

By contrast, boundary steady streaming can be used at a much lower driving frequency to generate
steady flows.10, 11 While it is possible to integrate vibrating suspended microstructures12, 13 into a
micro-device to induce streaming, such an approach is usually very complex in microfabrication.
An alternative way is to induce fluid oscillation over solid objects,14, 15 which is often limited by the
low oscillation frequency and small streaming velocity.

Ultrasound-driven oscillating microbubbles serve as excellent actuators to induce microscale
steady streaming, offering several advantages such as simple manufacture, easy integration into
microfluidic system, and large oscillatory amplitude and thus larger streaming velocity. Protruding
air pockets can form spontaneously from indentations in 3D11, 16–18 or from blind side channels in
2D set-ups,19–22 see Fig. 1. A commercially available piezoelectric transducer can be easily glued
anywhere on the substrate to provide excitation, as the direction of acoustic waves is immaterial, in
contrast to standing wave or SAW techniques. The compressibility of the bubble enables interface
oscillations of large amplitude εa with ε >∼ 0.05, where a is the bubble radius. In the last few years,
many microfluidic applications based on bubble streaming have been developed, including mixing
enhancement,19, 23 particle sorting and switching,20, 22 and particle focusing and enrichment.21

However, a fundamental understanding of microbubble streaming flow lags behind experimen-
tal progress. While general theories exist for streaming induced by oscillatory flow over no-slip
surfaces,24 or for bubble-induced streaming in bulk fluid,25, 26 the particular situation in practical
devices (Fig. 1) is complicated by the combination of (i) the no-stress bubble boundary condition,
(ii) the deformability of the bubble interface, (iii) the contact line between the bubble interface and
the wall, and (iv) the necessity of matching the oscillatory boundary layers around the bubble and at
the wall. Elder27 in his pioneering work already described the rich and complex flow patterns from
a 3D oscillating hemispherical bubble attached to a wall, submerged in liquids of different viscosi-
ties. Tho et al. reported experimental investigations of flow fields from 3D hemispherical bubbles
confined between two plane walls;28 in this geometry, qualitative and semiquantitative descriptions
emerged,18, 29 but without accounting for problems (iii) and (iv) above. In contrast to these studies,
microfluidic devices often have 2D planar geometry due to the lithography-based microfabrication
technique, so that cylindrical microbubbles (menisci) are more commonly encountered in practical
microfluidics applications.19–22, 30

Here, we study the oscillations of a cylindrical bubble sandwiched between two plane walls
(Fig. 1) and attached to a solid side wall under different driving frequencies, as well as the flow
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patterns arising from the bubble dynamics. The secondary steady streaming flow is the time-averaged
result of the interaction of first order oscillatory flows, which in turn are caused by the oscillating
bubble. To measure the bubble dynamics quantitatively, we use high-speed imaging at up to 100 000
frames per second (fps) to resolve the bubble interface shape in space and time.

II. MATERIALS AND METHODS

A. Experimental set-up

The experimental set-up shares similarities with the ones previously described,20, 21 schemati-
cally shown in Fig. 1. The microfluidic channel is made of polydimethylsiloxane (PDMS) using soft
lithography.31 Photoresist (SU-8) is spin-coated on a silicon wafer to 100μm thickness. Through
photolithography with a chrome mask, we obtain the master mold in SU-8. The components of
PDMS (Sylgard 184, Dow Corning) are well mixed at ratio 10:1, degassed, and poured onto the
SU-8 mold to cross-link at room temperature for 24 h. Fully cured PDMS replicas are peeled off
from the wafer and bonded to a flat PDMS layer with the help of oxygen plasma treatment. Inlets
and outlets are punched using a 1.5 mm Biopsy punch (Premier Uni-Punch) and interfaced through
1/32 in. inner diameter tubing (SmallParts Inc.) for liquid access. The microfluidic device is then
bonded at the substrate slide (either glass or polystyrene) after treatment with oxygen plasma. The
microfluidic device has a main channel with a depth of D = 100μm and height in the image plane
of H = 1000 μm, and a side channel with a opening of w ≈ 80 μm wide (Fig. 1(b)).

When introducing aqueous glycerol solution (23% glycerol by weight) into the main channel
through a syringe pump (PHD Ultra, Harvard Apparatus), an air bubble close to semi-cylindrical
shape protruding into the main channel forms in the side channel (Fig. 1(c)). A piezoelectric
transducer (thickness 1 mm, diameter 10 mm, Physik Instrumente, Germany) glued to the glass slide
provides ultrasonic excitation of the bubble, using sinusoidal signals of frequency f = 1 − 100 kHz
from a function generator (7075, Hioki, Japan) and amplifier (7500, Krohn-Hite, USA). The device
is illuminated by a halogen source (TH4-100, Olympus, USA) for transmitted-light bright-field
microscopy.

We use an inverted microscope (IX71, Olympus) with a 20 × or 40 × objective lens, together
with a high-speed camera (Phantom v310, Vision Research, USA) to capture top-view images.
Polystyrene microparticles of radii ap = 0.5 − 1 μm (Magsphere Inc.) are suspended in a density-
matched water-glycerol solution as tracers for streak visualization. Streak photographs are obtained
by superposition of typically 1000 successive images at a frame rate of 1000 fps. To study the
dynamics of the bubble interface, we capture images of 120 × 80 pixels, at 100 000 fps and with an
exposure time of 1 μs (Fig. 1(d)).

B. Data analysis

We vary the driving frequency f from 1.6 kHz to 103.6 kHz, with an increment of � f = 0.5 kHz
between 1.6 kHz and 25.6 kHz and of � f = 1 kHz between 25.6 kHz and 103.6 kHz, while keeping
the input driving voltage to the piezoelectric transducer constant. At each frequency, a total of
1000 consecutive images are recorded. The recorded images are imported to freeware ImageJ (NIH,
USA),32 first converted to binary images with proper thresholding, and then the bubble outline in each
frame is extracted and saved. We use MATLAB to characterize the bubble outline as a radial function
r(θ , t), measured in polar coordinates from an origin at the center of the side channel opening, as
shown in Fig. 1(e). We will show that information about the bubble motion in the radial-azimuthal
plane (Fig. 1(e)) is sufficient to explain its behavior, i.e., oscillations in the direction of the axis of the
cylindrical bubble have negligible effect and both the bubble surface oscillations and the resulting
flow fields can be understood as two-dimensional dynamics in the radial-azimuthal plane. Below,
we present both experimental evidence and theoretical justification for this treatment of the problem
as an oscillating 2D bubble.

The shape of the initially undisturbed bubble is described by r0(θ , 0). The angle-dependent
amplitude of the bubble is then characterized by �r(θ , t) = r(θ , t) − r0(θ , 0). Even though the
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FIG. 2. Bubble streaming flow patterns at different driving frequencies, with arrows indicating the orientations of the vortices.
Outline of oscillatory bubble superposed over one cycle at different frequencies (e) 9.6 kHz, (f) 20.6 kHz, (g) 48.6 kHz, and
(h) 100.3 kHz.

camera sampling rate is almost the same as the higher driving frequencies f ∼ 100 kHz, the very
short exposure time (1 μs) and carefully chosen driving frequencies allow us to improve the time
resolution using stroboscopic techniques. For each frequency, we use the middle 500 frames of the
captured images for analysis. We then determine the mode amplitude and phase angle by performing
Fourier decomposition according to

�r (θ, t) = a
∑
n=0

an cos(2nθ ) sin(ωt + φn), (1)

where ω = 2π f is the angular frequency, an are the dimensionless mode amplitudes, and φn the
phase angles. The decomposition into cosines is suggested by the symmetry of the interface and the
presence of the wall.

III. RESULTS AND DISCUSSION

A. Flow patterns at different driving frequency

When changing driving frequency f in the range of 1.6 kHz to over 100 kHz, we have observed
a succession of different flow patterns, as shown in Fig. 2. At lower frequencies (Figs. 2(a) and
2(b)), there are two symmetric vortices above the bubble, drawing liquid towards the bubble and
pushing liquid upwards along the pole of the bubble. We denote this pair as “fountain” vortices or
loops. This flow pattern has been described as the “generic” streaming pattern near an interface,
both in the present 2D set-up19, 20 and (as an analogous toroidal vortex loop) for 3D hemispherical
bubbles.11, 18, 27 As f increases in our set-up, a second pair of vortices is observed to appear, with
orientation opposite (“anti-fountain”) to the first pair (see Fig. 2(d)). With even higher driving
frequencies, the “anti-fountain” vortices dominate over the “fountain” vortices (see Fig. 2(d)),
reversing the far-field flow pattern. In Figs. 2(e)–2(h), we show the corresponding outlines of the
bubble movement by superimposing high-speed images over one cycle near the frequencies of the
streak images. At frequency f ≈ 10 kHz, the outline shows a single crescent (antinode) near the
pole of the bubble. With increased f, more nodes and anti-nodes appear, see Figs. 2(f) and 2(g). At
even higher f, the outline seems to have a uniform oscillation along the entire bubble. The different
node patterns indicate the presence of frequency-dependent bubble oscillation (shape) modes. For
a free bubble driven by a time-varying pressure field, the monopole is excited most effectively and
separately from any shape modes. For a bubble located at the side channel opening, however, shape
and volume modes have to be excited together to accommodate pinning of the contact line. Note that
this pinning may be weak: There may be some mobility of the contact line, but because it is located
near the corner connecting the horizontal wall and the side channel wall, its location changes little
even for significant bubble oscillations. In Sec. III B, we present quantitative measurements of these
mode contributions.
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FIG. 3. Measured dimensional mode amplitude a an (a) and (b), and phase which is represented in terms of sin (φn − φ0)
(c) and (d). Open symbols are for the glass substrate, filled symbols for the polystyrene substrate.

B. Mode amplitude and phase

We plot the amplitude of the first four (n = 0, 1, 2, 3) modes for a microfluidic device mounted
on a glass substrate in Fig. 3(a); Fig. 3(c) shows the difference of phase angles between the shape
modes n > 0 and the volume mode n = 0, through the term sin (φn − φ0). The bubble amplitude
response curves in Fig. 3(a) are jagged, while the phase difference shows a smooth change as f is
varied (Fig. 3(c)). The strong variations in the amplitude spectrum can be explained by the actual
driving pressure levels acting on the bubble, which depend on both the characteristic resonances
of the piezoelectric transducer and the characteristic response of the entire fluidic set-up, changing
with its material composition and geometry. In an earlier experimental study, Tho et al. measured
the pressure level using a hydrophone and found a strongly nonlinear acoustic pressure amplitude as
a function of excitation frequency.28 In other words, the non-smooth amplitude curve is attributed
to a non-constant driving pressure, though the driving voltage to the piezoelectric transducer is kept
constant.

We demonstrate the dependence on material composition by measuring the bubble response
with a different set-up where the substrate slide is made of polystyrene. The details of the resulting
amplitude spectra (Fig. 3(b)) are very different from Fig. 3(a). By contrast, when comparing the
measured phase angles Figs. 3(d) and 3(c), we observe almost identical phase spectra, indicating
these as intrinsic characteristics of the bubble motion.

Encouraged by the universal spectra of relative phases, we proceed to analyze the analogous
amplitude property, i.e., the relative amplitude of each mode normalized by that of the volume mode
an = an/a0. In Fig. 4(a), an is plotted for both the microfluidic devices mounted on the glass substrate
and the polystyrene substrate, respectively. The curves are in very close agreement, indicating that
the quantity an can be used to describe the intrinsic bubble response regardless of the fluidic set-
ups. This normalization strategy thus allows for meaningful comparison of data across set-ups and
reveals a much simpler, robust resonance structure. We note that the monopole amplitude is always
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the largest for all driving frequencies, while the higher order modes show distinct peaks, around
12 kHz for n = 1, 30 kHz for n = 2, and 45 kHz for n = 3, respectively. However, it must be pointed
out that these peaks are not conventional resonant frequencies, which are defined as peaks under
a constant driving pressure (note that direct measurement of driving pressure with hydrophones is
possible in cm-scale fluid chambers,28 but is impractical inside a sub-mm microchannel). The relative
amplitudes and phases thus emerge as important parameters to characterize the bubble behavior and
subsequently predict the streaming flow, as discussed below.

C. Relative streaming strength and flow patterns

Steady streaming through Reynolds stresses at boundary layers can always be interpreted as
a second-order effect in the amplitudes of first-order oscillatory flows, i.e., in our case, steady
streaming flow components are proportional to quadratic terms of mode amplitudes. Nominally, one
would expect the term ∝ a2

0 to be the strongest contribution on account of the large a0 values, but
a pure (radial) volume oscillation does not lead to any steady streaming.26 Therefore, the dominant
streaming terms should be those resulting from the interaction of the volume mode and an n > 0
shape mode. The velocity scale of this mixed-mode streaming can be shown to be proportional to
a0ansin (φn − φ0), i.e., the phase shift between the modes is important. Making use instead of our
normalized amplitudes, we conclude that In ≡ an sin(φn − φ0) is a measure of bubble streaming
intensity due to the interaction between higher order and monopole oscillatory flows.

We plot In for the microfluidic devices mounted on glass and polystyrene substrates in the same
graph, Fig. 4(b). The data from both set-ups again coincide, indicating that intensity In displays
resonance peaks intrinsic to a bubble of a given radius. A resonance spectrum is observed: as f is
increased, I1 has the largest magnitude from between a few kHz to about 25 kHz and peaks around
15 kHz. Between 25 kHz and 40 kHz, I2 is seen to have a larger contribution, with a peak at about
30 kHz, while I3 peaks around 50 kHz. The streaming flow depends on other modes of streaming
as well, e.g., on contributions like a1a2 sin(φ2 − φ1). However, these are typically small, because
of the small prefactors (we find a1a2 sin(φ2 − φ1) <∼ 0.2) and also because higher-order streaming
contributions decay faster with distance from the bubble.

In general, higher order mixed streaming tends to have more complex flow structure near the
bubble surface. In order to visualize the finer flow structures of the streaming flow, particularly
near the bubble surface, we use smaller tracers (ap = 0.5 μm) and a 40 × objective lens. Streak
photographs of four different f are shown in Fig. 5. A closer examination of Figs. 4(b) and 5 shows
a change of flow patterns with varying prominence of different In. At low frequency in Fig. 5(a), the
predominant two “fountain” vortices flow structure is a result of the streaming from the n = 0 and
n = 1 modes. As f is increased to around 30 kHz, a second pair of small “anti-fountain” appears
near the pole, a result of stronger n = 0 and n = 2 mode streaming (Fig. 5(b)). Further increase of f
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FIG. 5. Streaming flow patterns with small tracer particles and better spatial resolution: (a) 14.4 kHz, (b) 30.9 kHz, (c) 48.4
kHz, and (d) 93.4 kHz (note small vortices between the dashed line and the bubble surface).

induces even more complex structures near the bubble surface and at the same time another pair of
“anti-fountain” vortices emerges from the wall (Fig. 5(c)). At the highest f, the flow near the bubble
has many small vortices (between the dashed line in Fig. 5(d) and the bubble surface), while the
“anti-fountain” near the wall grows larger and dominates the whole flow field. We have verified20, 21

that these flow patterns change little in the direction perpendicular to the views presented, i.e., the
flow is 2D in character. This is surprising at first glance, as the axial length of bubble D is not much
greater than its diameter w. We will develop and justify the 2D approach in Secs. III D and III E.

D. Theory of cylindrical bubble oscillations

The flow patterns and their symmetries depend on the resonance structure of the bubble shape
oscillations visible in Fig. 4. The resonance behavior of free bubbles has long been known,33, 34

and other work has treated oscillations of hemispherical droplets35, 36 and hemispherical bubbles on
solid supports.37 In many microfluidic devices, as in ours, the bubble is confined by two parallel
supporting walls to which it is attached via large contact areas, thus assuming a cylindrical symmetry
(experimentally we can verify that these contact areas are immobile). It is additionally pinned to rigid
walls by means of two contact lines that span the depth of the bubble along the y-axis (Figure 6(a)).
This practically relevant case, i.e., that of a bubble whose interface is part of a cylinder, attached to
a wall along contact lines, has not previously been treated. We will see that the resonance features

FIG. 6. (a) Geometry of the cylindrical bubble confined between plates a distance D apart. (b) Coordinate system of the 2D
geometry used in the calculation of bubble oscillations.
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of the bubble oscillation can be understood within an asymptotic theory framework that accounts
for the coupling of azimuthal modes through the boundary conditions.

We consider here an idealization of the experimental set-up: a cylindrical bubble of radius a
confined between parallel plates of distance D and pinned to a wall by means of two contact lines, as
shown in Fig. 6. We will assume that this wall is smooth, rigid, and no-slip, and that the contact lines
between the bubble surface and the wall remain stationary. A polar coordinate system coaxial with
the bubble is used, with the walls at θ = 0 and θ = π . We consider the situation where the surface of
the bubble undergoes oscillations at a single angular frequency ω with a characteristic dimensionless
amplitude ε, producing a characteristic oscillatory velocity U = εaω of the surrounding fluid.

For ε � 1, the flow, to leading order, is described by the linearized Navier-Stokes equations,
and being driven by surface oscillations of the bubble, shares the same angular frequency ω. We
first neglect axial oscillations of the bubble surface, and therefore approximate the flow field by a
planar flow and the bubble interface by a line in the (r, θ ) plane (Fig. 6(b)). Using a, ω−1, and U
as characteristic scales for length, time, and velocity, we introduce a dimensionless stream function
ψ(r, θ , t) that gives the components of velocity in the plane ur = r−1∂ψ /∂θ and uθ = −∂ψ /∂r. The
linearized vorticity equation may then be written as

(∇2 − α2)∇2ψ = 0, (2)

where α = (1 + i)/δ, with δ = a−1√2ν/ω being the Stokes boundary layer thickness.
We assume that the bubble interface R(θ , t) = 1 − iεζ (θ )eit is impermeable and stress-free.

These boundary conditions may be imposed, to leading order in ε, at the mean position of the
bubble26 and read

ε
1

r

∂ψ

∂θ
= Ṙ = ε ζ (θ )eit

∂2ψ

∂r2
− 1

r

∂ψ

∂r
− 1

r2

∂2ψ

∂θ2
= 0

⎫⎪⎪⎬
⎪⎪⎭ r = 1. (3)

In addition, the flow must be no-slip on the rigid walls at θ = 0 and θ = π , given by

1

r

∂ψ

∂θ
= ∂ψ

∂r
= 0 : θ = 0, π. (4)

Separable solutions to (2) of azimuthal wave number k are readily obtained as

ψk(r, θ ) = ψ̂k(r ) exp ikθ eit =
(

Ck

rk
+ Dk Kk(αr )

)
exp ikθ eit , (5)

where k may assume any complex value with a non-negative real part. The corresponding bubble
shape ζ is given by the kinematic boundary condition as

ζk(r, θ ) = ζ̂k(r ) exp ikθ eit , where ζ̂k(r ) = ikψ̂k(r ) . (6)

The modified Bessel function of the second kind Kk(αr) is an exponentially decaying vortical
solution that persists only in the boundary layer, while the algebraically decaying term in (5)
represents the potential flow solution, with a corresponding potential

φk(r, θ ) = −i
Ck

rk
exp ikθ eit . (7)

If, by comparison, we take axial oscillations (along the coordinate y) into account as well, we find
potential flow solutions by separation of variables38, 39 as

φkm(r, θ, y) = Kk(mr ) exp ikθ exp imy eit , (8)

where m is the dimensionless axial wave number. This solution replaces the power-law terms (7) for
m 	= 0. Note that the modified Bessel function decay in (8) is much stronger as r grows away from
the bubble surface, becoming exponential for mr > 1. As the smallest non-zero m is m = 2πa/D (at
least one axial wavelength must fit along D), this is fulfilled at even a fraction of a bubble radius
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away from the surface. The oscillatory flow field away from the bubble is therefore dominated by
the two-dimensional flow solutions given in (5). Additionally, we will show below that the expected
excitation amplitude of the axial oscillation modes is significantly smaller than that of the azimuthal
modes.

E. Theory of bubble resonance

While the general solutions (5) satisfy the kinematic boundary condition, determining coeffi-
cients Ck and Dk that satisfy both the stress-free condition at the bubble and the no-slip condition
at the wall is not trivial. We address this problem by recognizing6 that by temporarily relaxing the
zero-tangential velocity at the boundary condition at the wall, the general solution (5) simplifies to
a Fourier sine series, to which the no-stress boundary condition may be applied separately for each
mode k, due to orthogonality properties of the series. Assuming symmetry of the bubble shape about
θ = π /2, we have a general solution ψb to this modified problem

ψb(r, θ ) =
∞∑

n=0

An

(c2n

r2n
+ d2n K2n(αr )

)
sin 2nθ eit (9)

with ck and dk given by

ck = 1

k
− dk Kk(α) and dk = − 2(k + 1)

α2 Kk−2(α) + 2kα Kk−1(α)
, (10)

and the corresponding bubble shape ζ b = ∑
Ancos 2nθ . We have, in (9), constructed a general slip

solution that is ignorant of viscous effects near the wall, which may then be employed as leading
order “outer solution” in a matched asymptotic expansion. The expansion in integer k reinforces
the conclusion that slowly decaying solutions with exclusively azimuthal variation will dominate
fast-decaying solutions with axial variation and result in 2D flow, as observed in experiment.

We now invoke the well known solution for a viscous oscillatory flow near a wall7 in the limit of
thin boundary layers (δ � 1), composed of a wall boundary layer structure driven by an oscillatory
slip. The stream function ψw in the boundary layer over the wall at θ = 0 is given as

ψw(r, ξ ) = δ r v(r )

{
ξ − 1

r (1 + i)

(
1 − e−(1+i)ξr

)}
eit + O(δ3) , (11)

with ξ = θ /δ a rescaled azimuthal coordinate and v(r ) eit the oscillatory slip velocity at the edge
of the wall boundary layer. Asymptotic matching of the wall boundary layer solution to the outer
solution as ξ → ∞, together with the symmetry of the bubble oscillations about θ = π /2, enforces
that k is a non-negative even integer. We may then write for the slip velocity

v(r ) =
∞∑

n=0

2n An
c2n

r2n+1
=

∞∑
n=0

An

r2n+1
+ O(δ2), (12)

where An are the (generally complex) weights of the different angular components of the flow field
and the approximation results from a δ-expansion of (10).

We have so far excluded the corner regions near the contact lines, in which the bubble and
wall boundary layers overlap and where the wall boundary layer solution might become modified
by radial gradients warranted by the no-stress bubble surface. However, an expansion in orders of
δ of (5) verifies that the bubble boundary layer terms are absent up to the order to which the wall
boundary layer solution (11) is valid, which enables the extension of (11) into the corner regions up
to the bubble surface. We must still address any potential modification of the stress-free condition
at the bubble surface that could have been introduced by this extension. The tangential stress in the
corner is readily calculated from (3) and (11) as

1

δ2

(
δ2 ∂2

∂r2
− δ2 1

r

∂

∂r
− 1

r2

∂2

∂ξ 2

)
ψw

∣∣∣
r=1

= 1 + i

δ
v(1)e−(1+i)ξ + O(δ). (13)
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Clearly, if the bubble surface is everywhere stress free, it must be true that

v (1) ∼
∞∑

n=0

An = O(δ2). (14)

We will henceforth ignore the bubble boundary layer for further calculations, but note its
importance in maintaining a stress-free bubble surface. Using (5), (11), and (12), a uniformly valid
solution for the oscillatory velocity field is then given as

u(r, θ ) ∼
∞∑

n=0

An

r2n+1

[ {
cos 2nθ − (

e−αθr + e−α(π−θ)r
)}

êr + sin 2nθ êθ

]
eit . (15)

Using the kinematic condition in (3), the bubble shape is described by

ζ (θ ) =
∞∑

n=0

An
[
cos 2nθ − (

e−αθ + e−α(π−θ)
)]

. (16)

It is worth noting that (16) implies pinned contact lines simply by virtue of the walls being strictly
no-slip.

In the linear limit, the pressure field is a harmonic function and plays the role of a velocity
potential in the bulk of the fluid, where the flow is irrotational. Using a pressure scale ερa2ω2, the
oscillatory pressure in the liquid is given by

Pe(r, θ, t) = iερa2ω2

(
p∗ + A0 log

R∞
r

+
∞∑

n=1

An

r2n
c2n cos 2nθ

)
eit . (17)

Note that the pressure at infinity diverges logarithmically as a consequence of the assumption that the
flow is two-dimensional and may be regularized by assuming weak gradients in the axial direction.
For the purpose of this discussion, we retain (17), and replace the limit r → ∞ by r → R∞, assuming
that R∞ is large enough that the pressure at r = R∞ associated with the surface modes is negligible.
p* is then the non-dimensional uniform oscillatory pressure that persists at infinity and may be
externally imposed in the case of a long wavelength forcing, as in our experiments.

We now proceed to describe the bubble interfacial dynamics, and thus coefficients An, as
functions of the frequency of oscillation and the physical parameters of the system. At the bubble
interface, the normal stress balance yields σ e

nn − σ i
nn − �κ = 0, where σ e

nn and σ i
nn are normal

stresses on the interface due to the external and internal fluids, respectively, κ is the sum of the
principal curvatures of the interface, and � is the surface tension coefficient of the interface. To
leading order in ε, the unit normal at the surface is given by the unit vector in the radial direction
and we have σ e

nn = σ e
rr = −Pe + τrr , where Pe is external fluid pressure at interface (ζ = 0) and τ rr

= εωμ∂ur/∂r|ζ = 0 is the interfacial viscous normal stress due to the external fluid.
For a typical air bubble in water, the density and the dynamic viscosity of the interior gas is

much smaller than the exterior liquid, so that stresses due to the gas dynamics may be neglected and
the internal oscillatory pressure Pi follows the radius dynamics via a polytropic law of exponent η,
Pi ∝ R−3η.

The curvature κ of the bubble interface may be calculated using (16), which yields to leading
order in ε

κ(θ, t) = iε

a

[ ∞∑
n=0

An(4n2 − 1) cos 2nθ + (α2 − 1)
(
e−αθ + e−α(π−θ)) ∞∑

n=0

An

]
eit . (18)

If thermal and acoustic effects are negligible, the normal stress balance, rewritten as Pi − Pe

+ τ rr − �κ = 0, gives the dynamical equation describing the linear oscillations of the bubble, which
may be recast as

−ω2P (θ ) + 2iγ�ωT (θ ) + �2K(θ ) + �2
v A0 = ω2 p∗, (19)

where � =
√

�/ρa3, γ = μ/
√

ρa�, and �v = √
πηP0/ρS0.
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� is an angular frequency scale for surface mode resonance and �v is a 2D Minnaert frequency
describing volume resonance of a gas bubble with a rest cross-sectional area of S0. P (θ ), T (θ ),
and K(θ ) are the normal stress contributions of the pressure, viscous damping, and curvature,
respectively, and are given by

P (θ ) = A0 log R∞ +
∞∑

n=1

An

(
1

2n
− i δ2(2n + 1)

)
cos 2nθ,

T (θ ) =
∞∑

n=0

An(2n + 1)
[

cos 2nθ − (
e−αθ + e−α(π−θ)

) ]

−α
(
θe−αθ + (π − θ )e−α(π−θ)

) ∞∑
n=0

An,

K(θ ) =
∞∑

n=0

An(4n2 − 1) cos 2nθ

+(α2 − 1)
(
e−αθ + e−α(π−θ)) ∞∑

n=0

An.

(20)

The O(δ2) correction to the pressure produces terms comparable in size to the leading order damping
terms in the bulk of the fluid, via ω2δ2 = 2γω�, and is therefore retained. The last term of T (θ )
is negligible if γ � 1, considering (14). Note however, that the boundary layer terms in curvature
term K(θ ) may be sizable due to the prefactor of α2, in spite of (14).

If axial oscillations are again considered, it can be shown that the damping coefficient γ n = γ (2n
+ 1) for the nth azimuthal mode is modified in the presence of an oscillation of axial wavenumber
m to

γn(m) = γ
m

2

K2n−2(m) + 2K2n(m) + K2n+2(m)

K2n−1(m) + K2n+1(m)
. (21)

This reduces to γ n as m → 0, but bearing in mind that m is at least 2πa/D, we find for our
experimental parameters that even this lowest axial wave number leads to about five times larger
damping as compared to m = 0. Therefore, axial oscillations not only induce fast-decaying flow
fields, but the amplitude of these flow fields is, at equal excitation, much smaller to start with when
compared to the purely azimuthal modes. This further justifies the 2D model and rationalizes the
observed planar flow fields.

The radius dynamics are described by the component of (19) that is independent of θ , and
involves the forcing pressure p* and the constant R∞, which was introduced due to the planar flow
assumption. They are, however, irrelevant in the calculation of the surface mode amplitudes relative
to the radial mode. Formally, we evaluate a Fourier cosine series of (19) and consider only those
components that have explicit θ dependences. Rearranging the equations for the individual Fourier
cosine components of (19), we have

An + gn

∞∑
k=0

Ak + hn

∞∑
k=0

(2k + 1)Ak = 0, (22)

for all positive integers n, where gn = B̃n/D̃n and hn = C̃n/D̃n , with

B̃n = 4α(α2 − 1)

π (α2 + 4n2)
, C̃n = − 4iγ λα

π (α2 + 4n2)
,

D̃n = − λ2

2n
+ 4iλγ (2n + 1) + (4n2 − 1),

(23)

λ = ω/� being a dimensionless frequency. Mode coupling occurs purely through the boundary layer
terms gn and hn in the corner regions where the bubble meets the walls. Without these terms, one
recovers the 2D analogy of the surface mode dynamics for a spherical bubble in bulk fluid, which
remains unexcited by a long wavelength forcing.33
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FIG. 7. (a) Relative amplitudes ān and (b) sine of relative phase angles φn − φ0 of the first three even surface modes. The
symbols correspond to experimentally measured values for a nearly hemicylindrical bubble and the solid lines are predicted
by the theory. Vertical lines indicate the undamped resonance frequencies of corresponding surface modes of free cylindrical
bubbles in bulk.

In order to determine the strength of the surface mode amplitudes relative to the volume mode,
we solve (22) in conjunction with (14), for An ≥ 1 in terms of A0. Truncating the series at n = N, we
obtain an overdetermined system of N + 1 equations for the N unknowns A1 through AN,

An + gn

N∑
k=0

Ak + hn

N∑
k=0

(2k + 1)Ak = 0, (24a)

N∑
n=0

An = 0 . (24b)

To accommodate the pinning condition (14), we first write
∑N

0 An = K δ2 with a constant
K = O(1) and verify that the results are not sensitive to the choice of K, including setting K
= 0. Equation (24) may be concisely written as GinAn = A0 fi, where Gin encodes N dynamical
equation (24a) and kinematic condition (24b), and fi contains only terms of (24a) with prefactor A0.
The Fourier mode amplitudes of the flow field An may now be solved for as scalar multiples of A0

by a least squares minimization of the norm of the residual ‖G.A − A0 f ‖2.
Using these An, we decompose the bubble outline ζ (θ ) in (16) into its Fourier cosine components

ζ n and obtain surface mode shape amplitudes an and phases φn, as given in (1),

ζ (θ ) =
N∑

n=0

ζn cos 2nθ =
N∑

n=0

aneiφn cos 2nθ . (25)

Relative amplitudes ān = an/a0 and phases φn − φ0 can now be compared to experiment
(see Figs. 7(a) and 7(b)). The peaks of the relative amplitude curves occur near the resonance
frequencies for a bubble in free space �n = �

√
2n(4n2 − 1). The main features of the amplitude

and phase curves are reproduced consistently for each surface mode and are a consequence of the
surface mode coupling to the volume mode as well as to each other. The widths of the amplitude
curves are greater than expected from the damping coefficient γ alone—it must be noted here that
the oscillator equation (19) contains indirect contributions to damping from the vortical boundary
layer flow, leading to higher effective damping. Such contributions were previously noted for shape
oscillations of spherical bubbles by Prosperetti40 and in the context of sonoluminescing bubbles.41

The shape of the curves is not very sensitive to the choice of truncation N, though larger N leads to
smaller residuals, i.e., better approximations of (14). The remaining discrepancies can be attributed
to (i) the relatively large size of δ in experiment—expansions in this theory generally demand
nδ � 1, but for the frequencies in the range considered we have only nδ <∼ 0.4; (ii) neglected axial

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

140.180.249.62 On: Mon, 31 Aug 2015 22:44:40



022002-13 Wang, Rallabandi, and Hilgenfeldt Phys. Fluids 25, 022002 (2013)

oscillations of the bubble may lead to shifts in the azimuthal resonance frequencies38, 39 and minor
components of 3D flow (these effects could become stronger for bubbles of larger axial extent D,
as smaller axial wavenumbers become accessible); (iii) the results are rather sensitive to changes in
bubble rest shape: While the theory is compared here to experimental data for bubbles very close to
hemicylindrical shape, the resonances of slightly smaller (less than hemicylindrical) bubbles show
improved agreement.

The theory provides the full oscillatory flow field at any frequency, which is required in the
calculation of the steady streaming flow. At lower frequencies, where there are significant contri-
butions by individual surface modes, the flow patterns are dominated by a mixed mode streaming
from the bubble (as seen in experiment, Fig. 5). At higher frequencies, where the oscillatory flow is
dominated by the monopole, streaming along the wall becomes important.

IV. APPLICATION: OPTIMIZATION OF MIXING

With a quantitative understanding of the way flow patterns change when driving frequency f is
altered, we can tailor the streaming flows through tuning the frequency to fit a specific purpose in a
microfluidic application. Here we demonstrate mixing enhancement through frequency modulation.

Homogeneous mixing of samples and reagents is an essential preparation step for biological and
chemical reactions in μTAS (micro total analysis systems), but it is hindered by the laminar character
of the flow (note that our steady-flow Reynolds number remains small throughout). Mixers based
on microbubble steady streaming have been demonstrated in various set-ups,19 including practical
applications such as DNA hybridization.42 Most of the studies employed a single frequency driving
strategy.19, 23, 42

A bubble microstreaming set-up like ours should favor mixing because, when superimposed
on a directional flow, it forces fluid elements through a narrow gap between the bubble and vortex
streamlines,20, 21 stretching and folding the fluid elements in the process. However, we show here
that continuous low-frequency driving with a “fountain” flow does not lead to the most effective
mixing.

To illustrate this concept, we monitor the distribution of fluorescent particles (radius rp

= 50 nm, Life Technologies) in a T-junction mixer43 with a single oscillating bubble. Two streams
of the same liquid, one with fluorescent particles and one without, are injected (right to left) through
the T-junction with a bubble downstream of the junction, merging into a single Poiseuille flow in the
main channel of mean speed ū p (Figs. 8(a)–8(d)). When the bubble is at rest, the particle distribution
clearly shows laminar flow and non-mixing behavior (Fig. 8(a)). At a low driving frequency, the
primary “fountain” of the steady streaming combines with the Poiseuille flow to a quasi-2D steady
flow described before in sorting applications.20, 21 However, such a flow is not entirely effective in
mixing the fluids across the channel width (observe the uneven intensity distribution downstream of
the bubble in Fig. 8(b)). Can modulations of the driving frequency enhance the degree of mixing?

To answer this question we quantify the mixing quality using the fluorescence signal c from a
window of size 250 μm × 250 μm centered 575 μm downstream of the bubble, which is indicated
by a square box in Fig. 8(a). Various quantifications of mixing have been described in the literature;
we employ (i) a coefficient of variation of the grayscale signal44, 45 σ (c)/c̄ as a fast and simple
measure and (ii) the mix-variance46 �2(c − c̄) as a more sophisticated measure, which takes into
account the advection pattern of the fluid on all length scales within our window of interest. Note
that the Stokes-Einstein diffusion coefficient of our nanoparticles is so small (DSE = kB T/(6πμrp)
≈ 2.4 × 10−12m2s−1) that the stretching-and-folding patterns of bright and dark fluid remain visible
throughout our field of view, so that we can evaluate and optimize the mixing effect of the flow
field advection independent of diffusion effects. Note also that our flow is a practically relevant,
continuous-throughput flow (rather than a flow in a confined space, where the fluid elements never
leave the volume)—there is only finite time available for mixing.

We first consider the effect of breaking up the steady flow through low-frequency duty cycling:
the ultrasound of fixed amplitude and frequency is turned on and off alternately for fixed time
intervals τ � 1/f. As seen in Figs. 8(c), 8(e), and 8(f) this strategy does improve mixing in both
measures, if τ is large enough (note τ = 0 is the continuous case). Duty cycling is advantageous
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FIG. 8. Mixing in microstreaming flows combining a steady channel flow (right to left) with bubble streaming at different
driving modulation: (a) bubble is not excited; (b) bubble is driven continuously at 27.1 kHz; (c) bubble is alternately driven at
27.1 kHz and undriven (τ = 50 ms); (d) bubble is alternately driven at 27.1 kHz and 91.3 kHz, for intervals of τ = 5 ms; (e)
coefficient of variation of the grayscale signal σ (c)/c̄; (f) mix-variance �2(c − c̄) calculated based on the sampling window
indicated as a square box in (a), as a function of interval time τ . For both measures used here, smaller values indicate better
mixing and the frequency-switching strategy provides superior mixing throughout.

because, during the “off” part of the cycle, new unmixed fluid enters the region that—during the “on”
part of the cycle—is taken up by the streaming vortices, quickly stretching out this fluid into thin
bands. This mixed region is then advected downstream when the driving is turned off again, leading
to bright and dark fluid regions distributed across the entire channel height 0 ≤ z ≤ H. This reduces
the mix-variance measure in particular, which emphasizes uniformity on large length scales.46 With
continuous driving (as in Fig. 8(b)), this process cannot happen.

Maximum efficiency is expected when the time scale τ allows transport of unmixed fluid across
an entire bubble diameter (i.e., a scale of w). If τ is much smaller, the liquid distribution does
not change much during the intervals of no driving; if it is much larger, unmixed fluid flows by
without being mixed. Thus, we expect the best mixing close to τp = w/ū p. In our experiments, with
w = 80μm and ū p ≈ 1.3 mm/s, we find τ p ≈ 60 ms, in close agreement with the best mixing values
in Figs. 8(e) and 8(f). The mix-variance, in particular, detects this minimum very consistently at
different driving amplitudes (data not shown).

However, mixing can be further improved by alternating streaming between lower and higher
frequencies. We again adopt time intervals of length τ , but now we switch between f = 27.1 kHz
and f = 91.3 kHz driving at comparable amplitude. The Poiseuille advection part of the cycle is then
replaced by a different bubble streaming advection, which also redistributes the fluid, but does so
on a shorter time scale, as the flow speed of streaming is faster. As seen in Fig. 8(d), the short time
scales lead to a finer structure of stretching-and-folding stripes in the flow, together with the desired
large-scale mixing across the z-direction of the channel. The mixing quality is thus significantly
enhanced using this method and the finer striations of the fluid are desirable as the time scale of
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eventual diffusive mixing is governed by their length scale. Note that this approach only works when
the switch frequencies belong to different modes of oscillation and thus substantially different flow
fields. With the analysis of bubble interfacial oscillations detailed above, such a mixing strategy
can be designed in advance: In our example, we have chosen 27.1 and 91.3 kHz to maximize the
difference in flow fields between the cycles and thus the mixing quality. The mixing measures
in Figs. 8(e) and 8(f) for frequency switching indicate better mixing throughout and additionally
show a second minimum at a much smaller time scale τ f. By the same arguments as above, we
estimate this time as τ f = w/us , where the characteristic velocity of streaming20 replaces that of
the Poiseuille velocity. The streaming velocity near the bubble surface in our experiments is us ≈ 10
mm/s, resulting in τ f ≈ 8 ms, again in close agreement with the location of this second minimum.
Apart from the obvious advantage of mixing on smaller time scales, the more accurate mix-variance
criterion also rates this minimum at τ f as better in mixing quality. Note that the estimates of τ p and
τ f rely on effective averaging over the oscillatory flow during a modulation time interval. As τ f > 50
even for the shortest τ employed in our experiments, this time scale separation is accurately fulfilled.

V. CONCLUSIONS

The present work advances research towards a quantitative description of microstreaming from a
semi-cylindrical oscillating bubble attached to a wall, experimentally measuring as well as modeling
the oscillation modes of the bubble interface, which are an indispensable input for the calculation of
the mixed-mode streaming relevant in practical applications. It is shown that the relative amplitudes of
azimuthal surface modes to the volume mode provide a robust measure and predictive characteristic
of the flow structure and that the features of the associated resonance structures in frequency space
can be explained by asymptotic theory. Axial modes are both more strongly damped and more
strongly decaying with distance from the bubble, leading to a flow field that can be described as
two-dimensional. As frequency increases and higher-order shape modes significantly contribute to
the bubble oscillation, more intricate vortex structures develop close to the bubble. The positions
of the resonance peaks for the individual oscillation modes are well approximated by the expected
resonance frequencies of free-bubble shape modes. However, the shape of the peaks (height and
width) can only be understood through the coupling of different modes owing to the viscous effects
in the boundary layers that govern the flow near the bubble interface and the wall. The relatively wide
peaks help explain the robust flow field response obtained from bubbles in experiment, where an
accurate fine-tuning of frequencies is generally unnecessary and frequency drift does not compromise
the flows.

In describing the frequency ranges of substantially different flow patterns, the theory furthermore
provides guidance for experiments seeking to alter the appearance of the flow field to suit particular
applications. Specifically, we show that knowing the frequency dependence of the streaming flow
field helps in optimizing micromixing efficiency through frequency modulation, as a strong change in
the character of the flow over a modulation cycle enhances mixing considerably. These conclusions
are robust with respect to the way mixing efficiency is quantified. Future work will aim at deriving the
far-field streaming flows directly from the bubble interface modes described here, thus completing a
theoretical description of a complex streaming phenomenon that has proved useful in a large number
of applications ranging from transport and force actuation to microscale sorting.
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