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Fast inertial particle manipulation in oscillating flows
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It is demonstrated that micron-sized particles suspended in fluid near oscillating interfaces
experience strong inertial displacements above and beyond the fluid streaming. Experiments
with oscillating bubbles show rectified particle lift over extraordinarily short (millisecond)
times. A quantitative model on both the oscillatory and the steady time scales describes
the particle displacement relative to the fluid motion. The formalism yields analytical
predictions confirming the observed scaling behavior with particle size and experimental
control parameters. It applies to a large class of oscillatory flows with applications from
particle trapping to size sorting.
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The manipulation of particles in microfluidic flows is a central task in manifold applications in
laboratory-on-a-chip or biomedical applications [1]. Passive transport in the flow is not sufficient if
microparticles such as biological cells are supposed to be displaced, trapped, or sorted according
to size or other physical properties. Recently, inertial forces on particles have been discussed
prominently for such purposes, including slow displacement by the action of shear gradients [2–4]
or more rapid motion in acoustofluidics [5–8]. We here describe a form of inertial manipulation of
particles close to oscillating interfaces, effecting fast actuation without relying on the acoustofluidic
requirements of density or compressibility contrast between the particle and fluid.

Few experiments have detailed the displacement of particles in periodic flows driven from
moving boundaries. Particle rearrangement in vibrating containers [9–11], object capture in
streaming vortices [12], or trapping by radiation forces [13,14] have been reported, and studies with
oscillating bubbles demonstrate differential deflection over short time and length scales [15,16].
However, a rigorous understanding of the particle trajectories in these flows and the underlying
physical principles is missing.

Oscillatory fluid motion in general gives rise to steady streaming flow, which has great
practical relevance in applications [17,18]. While the experiments described here feature bubble
microstreaming, it should be stressed that both the oscillatory and the streaming flow are fully known
analytically and described in previous work [19,20], and that the streaming flow is merely utilized
to guide the particles into the vicinity of the oscillating interface. The current Rapid Communication
focuses entirely on particle displacements beyond passive fluid element motion.

A schematic of a typical bubble microstreaming device design is shown in Fig. 1(a) (cf.
Refs. [15,16,19]). A blind side channel off a polydimethylsiloxane (PDMS) microchannel traps
a semicylindrical air bubble of radius ab = 40 μm. The device is bonded to a glass slide with a
piezoelectric transducer (Physik Instrumente) driven through a function generator (model 7075,
Hioki) and an amplifier (model 7500, Krohn-Hite) at frequencies f = ω/(2π ) = 20–40 kHz. The
resulting bubble oscillations have a small amplitude ε � 1 (normalized by ab) and excite both a
primary, oscillatory flow u0 and a secondary, steady streaming flow us [see Fig. 1(b)]. The velocity
scales of these flows are u0 = εabω and us = ε2abω, respectively [21,22]. Syringe pumps (PHD
Ultra, Harvard Apparatus and EW-74905, Cole-Parmer) establish constant equal flow rates through
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FIG. 1. (a) Schematic of device design for sorting: The upper inlet flow carries fluid only, while flow from
the lower inlet carries particles. (b) Characteristic vortex pair streaming flow around a bubble, visualized by
passive tracers. (c) Streak image of separation of ap = 2.5 μm particles (gray) and ap = 5 μm particles (red);
the flow is a superposition of streaming and transport flow. (d) Closeup near the bubble interface: Differential
particle deflection happens rapidly and locally and is quantified in the present work.

both inlets [Fig. 1(a)], superimposing a transport flow onto the bubble-driven flow. Polystyrene
microparticles of radius ap = 0.5–5 μm are introduced through only one of the inlets into the
density-matched fluid (24% glycerol/water w/w; kinematic viscosity ν ≈ 2 × 10−6 m2/s). The
combined flow ensures that the particles are transported near the bubble, where they are separated
by size reliably with high throughput [16]. In Fig. 1(c), particles of ap = 5 μm are deflected into the
opposite outlet, while those with ap = 2.5 μm remain in the lower half of the device.

Clearly, particles experience size-dependent differential deflection (lift) across streamlines; a
closeup [Fig. 1(d)] shows that all deflections happen over very short times (∼1 ms) very close to the
bubble surface. The process has been semiquantitatively described as a hard-core steric interaction
between particles and bubble [16], but in the present experiments we observe particle dynamics in de-
tail with a high-speed camera (Phantom v310, Vision Research) and find this explanation insufficient.

Figure 2(a) shows the trajectories of two particles near a bubble, resolved at 100 000 fps. Direct
inspection of the movie (see the Supplemental Material [23]) confirms that the particles are never in
contact with the bubble surface, but are gradually displaced radially outwards while simultaneously
performing oscillations. The displacement of the larger particle is markedly greater. The observation

ap = 1 m
ap = 2.5 m

10 m 10 m
(a) (b)

FIG. 2. (a) Experimental trajectories of two particles, taken at 100 000 fps frame rate. Initially at very
similar positions, the particles oscillate with the bubble motion (extreme positions of the oscillating bubble
outline are indicated as dashed lines), but are never in contact with the bubble interface. Over several cycles,
particles are displaced outward, with larger particles experiencing greater deflection. (b) Snapshots from a
stroboscopic movie, with streaks from small passive tracers (ap = 0.5 μm) providing a background for the
motion of a large particle (ap = 5 μm, six positions indicated).
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FIG. 3. (a) Experimental trajectory of the large particle from Fig. 2(b) on the background of proxy
streamlines (dashed; gray lines are interpolations), showing strong lift displacements (large angles α) close to
the bubble surface. (b) Schematic and nomenclature for a quantitative description of the particle trajectory rp(t).
(c) Stroboscopic trajectory (blue) from solving (3), with fluid pathlines indicated as gray lines. The orange,
dashed line is a computed particle trajectory without oscillatory flow, which shows negligible net displacement.
(d) Particle velocity component v⊥ perpendicular to streamlines as a function of the azimuthal angle θ along
the trajectory in experiment (red) and simulation (blue), showing good agreement throughout; the peak value
v⊥,max is indicated.

is consistent with the hydrodynamic expectation of a thin fluid layer between the particle and bubble
hindering surface-to-surface contact [24,25].

Note that the particle Reynolds number associated with the steady motion component (at
typical ε <∼ 0.1, Re(s)

p = usap/ν � 1) is a factor ε smaller than that of the oscillatory flow
(Re(0)

p = u0ap/ν >∼ 1 for ap
>∼ 2 μm). Therefore, an understanding of any inertial effects behind

the observed lift must include the primary oscillatory flow.
Lift displacements of particles can be quantified more accurately by analyzing the movies

stroboscopically: Imaging one frame per driving cycle in an experiment with one ap = 5 μm particle
(Re(0)

p > 1) amidst a large number of ap = 0.5 μm particles (Re(0)
p � 1), the latter’s trajectories

provide proxies for fluid pathlines (we will show below that the lift on these small particles is
negligible). Figure 2(b) shows snapshots of the large particle superimposed on streaks of the
small particle flow pattern, while Fig. 3(a) shows the extracted large-particle path. At points of
intersection between the large-particle trajectory and proxy streamlines (including interpolations
between small-particle trajectories), we measure both the steady particle speed |vs |(t) and the angle
of intersection α(t) [cf. Fig. 3(a)]. The particle velocity normal to the streamline is v⊥ = |vs | sin α,
and is a direct quantitative measure of local deflection across streamlines.

We find that, independent of the oscillation phase chosen for stroboscopic imaging, v⊥ reaches
its peak value near the location at which the particle is closest to the bubble surface; cf. Fig. 3(d)
for a typical result. We denote v⊥,max as the maximum of this peak value over all phases for a
single-particle trajectory. This experimental procedure was carried out for dozens of particles over
several driving voltages (changing ε), driving frequencies ω, and two large-particle sizes (ap = 5 μm
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and ap = 2.5 μm). All results confirm the rapid lift displacement of the particles near the bubble,
and a strong increase in displacement with particle size. The duration of appreciable lift [large v⊥(t)]
is typically 10–20 oscillation cycles (0.5–1 ms).

Considering the unusually fast and specific application of forces in this microfluidic device, it is
desirable to have a quantitative understanding of the displacement process. Modeling is aided by the
available analytical results for the bubble streaming flow field [19,20] and the superimposed transport
flow [16]. The Maxey-Riley (MR) equation [26] provides a conceptually straightforward description
of particle dynamics in free space and involves a balance between the hydrodynamic forces, inertia
(both particle and fluid), and the momentum diffusion away from the particle (the Boussinesq-Basset
history force). For the parameters of the present system, Faxén contributions are small to relative
order (ap/ab)2 and can be neglected; we also neglect the history term, a simplification which can be
shown to be self-consistent (see Supplemental Material [23]). The MR equation is then

2πa3
pρ

(
d2rp

dt2
− Du

Dt

)
= FH , (1)

where D/Dt is the material time derivative and rp(t) is the position of the particle center. An
important modification to the free-space MR equation is due to the varying distance of the particle to
the oscillating bubble interface. For large distances, the hydrodynamic force is simply the Stokes drag
F∞

H = −6πηap(vp − u)rp
, where vp = drp/dt is the instantaneous particle velocity. Conversely,

for a particle close to the stress-free bubble, the force is given by lubrication theory as Flub
H =

−6πηa2
per (vp · er − ∂t rb)/(4h), which is valid in the limit h � ap � ab [24,27] for small-amplitude

oscillations (ε � 1) of the bubble from its mean circular position [Fig. 3(b)]. Here, rb(θ,t) is the
radial position of the oscillating interface and h(rp,t) is the separation distance between the surfaces
of the particle and the bubble—see Fig. 3(b) for the nomenclature. While a rigorous expression for
FH for all distances can be derived [24,28], it is convenient (in the spirit of Ref. [29]) to superpose
the two limits (FH ≈ F∞

H + Flub
H ), obtaining

FH ≈ −6πηap

{
drp

dt
− u + ap

( d rp

dt
· er − ∂ rb

∂t

)
4h(rp,t)

er

}
rp

, (2)

which remains asymptotically accurate (to leading order) for both large and small particle-bubble
separations [24,25,30].

Defining dimensionless variables r̃ = r/ab, t̃ = ωt , and ũ = u/u0, (1) and (2) yield a modified
Maxey-Riley equation for the particle position r̃p(t),

λ
d2r̃p

dt̃2
+

(
I + γ erer

h̃(r̃p,t)

)
· d r̃p

dt̃
− ε

{
λ

(
∂ ũ
∂t̃

+ ε ũ · ∇̃ũ
)

+ ũ + γ

h̃(r̃,t)

∂ r̃b

∂t̃
er

}
r̃p

= 0, (3)

where h̃(r̃p,t) = r̃p − r̃b − 4γ is the dimensionless particle-bubble separation distance. Further-
more,

λ = a2
pω

3ν
and γ = ap

4ab

(4)

are, respectively, the dimensionless particle inertia and a ratio of length scales of the particle and the
boundary.

Equation (3) is an ordinary differential equation for the trajectory r̃p(t̃) of the particle that depends
on λ, γ , and the amplitude ε � 1. The fluid velocity field can be expanded as

ũ(x̃,t̃) = ũ0(x̃)eit̃ + εũ1(x̃) · · · , (5)

where ũ0e
it̃ is the oscillatory velocity and ũ1 is the steady flow comprising both the steady bubble

streaming us and the channel transport flow. The two-dimensional (2D) geometry of the problem
allows for a closed-form derivation of ũ(x̃) at a given driving frequency and amplitude [16,19,20];
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deviations from 2D flow can be important for vortex-trapped particles over very long time
scales [31,32], but are unimportant for this modeling of fast displacements.

We stress that this formalism takes into account the full geometry and dynamics of the moving
interface as well as its effect on the flow field. Thus it differs from approaches using lubrication
terms in a Lattice-Boltzmann setting with an imposed cutoff [33] or introducing Saffman lift [34]
(a term sensitive to local gradients in the flow, and strictly applicable only in situations where there
are no fluid boundaries near the particle).

A numerical solution of (3) provides a direct comparison with experiment, from which we
extract initial conditions (position and velocity) for the particle, as well as the values of all physical
parameters. The simulations (which give results on the oscillatory as well as steady time scales)
are analyzed exactly as the experiments: Particle positions are registered once per cycle and the
particle drift velocity v⊥(t) inferred. Figure 3(c) shows the resulting stroboscopic trajectory and
displacement of the particle. Also shown (dashed) is a trajectory computed with the oscillatory part
of the flow field omitted (by setting ũ0 = 0 and ∂r̃b/∂t = 0), confirming that particle inertia in the
steady flow is too small to lead to an appreciable net drift of the particle position across streamlines.

A direct comparison of the perpendicular particle velocity v⊥ obtained from the model to
experiment in Fig. 3(d) shows excellent agreement—we stress that this plot is not a fit, with all
modeling parameters directly obtained from experiment. To gain more insight into how the particle
trajectories change with the experimental parameters, we perform a further analytical simplification
of the modified MR equation (3). While the oscillatory part of the dynamics is generally a combination
of a radial monopole mode and surface modes of smaller amplitude [19], we shall assume that the
latter are only important in establishing the streaming flow but are otherwise negligible, so that we
can replace ũ by

ũ(x̃) ≈ ũM
0 eit̃ + εũL(x̃). (6)

Here, the oscillatory flow is governed by the monopole ũM
0 (x) = er/r̃ , and the steady flow is taken

to be the Lagrangian velocity field ũL(x) obtained from the full analytical expression, which by
definition makes the time-averaged fluid trajectories identical in the full and simplified formulations
(see Supplemental Material [23]). Consistent with this approximation, the interface shape is now
r̃b ≈ 1 − iε eit̃ . Note that ũL · er |r̃=1 = 0, as average fluid trajectories do not penetrate the mean
bubble interface. The azimuthal motion of the particle is then steady and follows ũL · eθ passively,
while particle deflections follow from the radial component of (3).

We observe that the flow has two well-separated time scales, a fast oscillatory scale t̃ , and a
slow steady scale T̃ = ε2 t̃ , which is a characteristic transport time set by the steady flow (ab/us in
dimensional terms). We seek a solution for the particle motion in the form

r̃p(t̃ ,T̃ ) = r̃p0(T̃ ) + ε r̃p1(T̃ ) eit̃ er + · · · , (7)

where r̃p0(T̃ ) represents the 2D steady trajectory of the particle and εr̃p1(T̃ ) is its radial oscillation
amplitude along its trajectory. Solving (3) perturbatively for ε � 1 using standard techniques of
time-scale separation [35], we find that a particle follows the fluid oscillation with a phase shift
that depends on its inertia λ, thereby determining r̃p1(T̃ ). This phase shift causes a rectified, steady
contribution to the particle velocity over an oscillation cycle. The combination of this inertial
rectification and the steady transport flow yields a steady radial particle velocity, which in units of
us reads

d r̃p0

dT̃
= λh̃0

h̃0 + γ

[
γ (h̃0 + 4γ )

2(1 + h̃0 + 4γ )3

2h̃0 + γ

(h̃0 + γ )2 + h̃2
0λ

2

]
+ h̃0ũL(r̃p0)

h̃0 + γ
, (8)

where h̃0 = r̃p0 − 1 − 4γ is the average of the separation distance h̃ over an oscillation cycle, and
ũL = ũL · er .

The first term in Eq. (8) is due to the rectification of the particle’s oscillatory inertia, while
the second term represents radial transport by ũL, with a geometric factor accounting for the
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FIG. 4. Maximum normal velocity of particles v⊥,max as a function of ε2apω, showing experimental
measurements (solid symbols) and simulation results (open symbols) for a variety of driving frequencies.
Experimental data include particles of ap = 2.5 μm (red) and ap = 5 μm (blue), simulations cover a size range
0.5 μm � ap � 5 μm. The dashed line is the scaling prediction of (9) using (−∂ũL/∂r̃)max,r̃=1 = 2.4.

hydrodynamic resistance from the lubrication layer. The azimuthal motion corresponds to passive
transport, so that the steady particle velocity approaches the steady fluid velocity ũL for h̃0 � γ .

This monopole-only analytical simplification of the particle motion captures the salient features
of the full trajectories. Note that oscillating bubbles, with dominant radial oscillations, are ideally
suited experimental systems to study the accuracy of this approach. Consistent with both experiment
and simulation, it demonstrates that the lift velocity v⊥ is only appreciable when h̃0 � O(γ ). Since
steady fluid streamlines are nearly azimuthal close to the bubble surface, the particle velocity normal
to the streamlines is approximately the radial velocity ṽ⊥ ≈ dr̃0/dT̃ − ũL(r̃p0). Using a Taylor
expansion to write ũL ≈ (h̃0 + 4γ )(∂ũL/∂r̃)|r̃=1, and assuming small separations (h̃0 � 1) and
particles much smaller than the bubble (γ � 1), we obtain

v⊥,max ≈ ε2apω

(
−∂ ũL

∂r̃

∣∣∣∣
max

)
r̃=1,

. (9)

The quantity in parentheses represents the dimensionless maximum radial extensional shear rate of
the steady flow near the bubble surface, for which analytical streaming theory [20] determines a
mean value of ≈2.77 for f in the range 10–40 kHz.

The scaling v⊥,max ∝ ε2apω predicted by (9) is confirmed across a range of amplitudes,
frequencies, and particle sizes by experimental measurements as well as simulations (cf. Fig. 4). The
best-fit prefactor is ≈2.4, close to the direct prediction from theory above. For the small particles used
as passive-tracer proxies in the experiments, the expected displacement is below 1 μm, justifying this
approximation. Note also that the hard-core steric interaction model of Ref. [16] predicts a particle
displacement of ap during a transport time near the bubble of order 1/(ε2ω), i.e., this estimate is
recovered as a limiting case if the displacement dynamics of the particle is dominated throughout
by v⊥,max.

The present study provides quantitative measurements, as well as explicit modeling, of the
inertial rectification of particle positions near oscillating boundaries. Here, the streaming flow
induced by the same oscillations ensures particle transport, but the concept of inertial rectification
is general—in fact, this type of particle displacement is even present in cases (such as purely radial
oscillation) where no streaming is present. It is illuminating to compare the scaling of particle
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velocities perpendicular to fluid pathlines with that in traditional shear-induced inertial particle
migration. In the latter [4], a steady transport flow U in a channel of height H induces a lift velocity
in the particle of order vγ̇ ∼ Uλγ̇ (ap/H )k , where λγ̇ = a2

pU/(Hν) and k = 1 or k = 3 near the
channel center or the channel wall, respectively. In comparison, the first term on the right-hand side
of (8) represents a rectification velocity of (in dimensional terms) vR ∼ usλ(ap/ab), in the relevant
regime of λ <∼ 1 and γ � 1. If we match the steady transport speeds in the two cases (U = us),
we obtain vR/vγ̇ ∼ (H/εab)2 for k = 1, so that for typical experimental values the displacement
speed utilizing the oscillating interface is three to four orders of magnitude greater (and this ratio
becomes even larger for k = 3). These estimates show why particles get displaced highly effectively
over millisecond time scales in our experiments. A direct comparison with acoustofluidic particle
migration is inappropriate, as the present formalism is entirely incompressible, and the particles
are density matched, so that acoustofluidic forces are zero. Further work will explore the effects on
particles with a density mismatch.

The modeling approach successfully describes particle motion on all relevant time scales and cap-
tures its dependence on physical control parameters. The particular form of oscillatory flow used here
is immaterial to the techniques employed; the effect of any periodic flow with appreciable particle
inertia and extensional gradients can be understood analogously. The resulting rectified motion allows
for fast targeted deflection and size segregation of micro- and nanoparticles, so that these insights
provide inspiration for microfluidic devices capable of extremely rapid inertial particle manipulation.

The authors appreciate valuable discussions with J. F. Brady, S. H. Davis, G. Leal, M. Miksis, and
D. Saintillan, and gratefully acknowledge support for this work by the National Science Foundation
under Grant No. CBET-1236141.
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