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Rotation of a submerged finite cylinder moving
down a soft incline†

Baudouin Saintyves, *ab Bhargav Rallabandi,c Theo Jules, ad Jesse Ault, e

Thomas Salez, fg Clarissa Schönecker, hi Howard A. Stonej and L. Mahadevan *k

A submerged finite cylinder moving under its own weight along a soft incline lifts off and slides at a

steady velocity while also spinning. Here, we experimentally quantify the steady spinning of the cylinder

and show theoretically that it is due to a combination of an elastohydrodynamic torque generated by

flow in the variable gap, and the viscous friction on the edges of the finite-length cylinder. The relative

influence of the latter depends on the aspect ratio of the cylinder, the angle of the incline, and the

deformability of the substrate, which we express in terms of a single scaled compliance parameter. By

independently varying these quantities, we show that our experimental results are consistent with a

transition from an edge-effect dominated regime for short cylinders to a gap-dominated

elastohydrodynamic regime when the cylinder is very long.

1 Introduction

The interplay between lubricated flow and deformable surfaces
is ubiquitous in nature and engineering in settings spanning a
broad range of length scales, e.g. earthquakes,1 avalanches,2

landslides,3 lubrication of cartilaginous and artificial joints4–9 or
industrial bearings.10 Often, this elastohydrodynamic coupling is
seen in the presence of confined flow where pressure gradients are
likely to be large. Previous theoretical works have studied confined
flows in the soft lubrication approximation and accounted for the
roles of elasticity,11–16 fluid compressibility,17 the inertia of the

fluid and the elastic medium,18 and viscoelasticity of the sub-
strate.19 More recent works have focused on elastohydrodynamic
effects for liquids confined at the micro and nano scales,20–22

which has important consequences for surface mechanical
characterization.23,24 For symmetrical objects, the results show
that elastic deformations lead to a non-symmetric pressure field
and to the emergence of a friction-reducing lift force. Of parti-
cular importance in nature are cases of freely moving particles
close to soft surfaces as seen in flows of cells in vessels25 or
microfluidic devices,26,27 the mobility of suspended or falling
objects near elastic membranes,28–31 the behavior of vesicles
near walls32 or the collisions between suspended particles.33 It is
only very recently that a theoretical work34 addressed freely
moving objects and showed how a free falling cylinder can
sediment, slide and spin along a soft incline. A particularly
interesting result is that the elastohydrodynamic lift force can
counteract sedimentation and lead to an emergent sliding steady
state that has since been confirmed experimentally.35 The
experimental study also raised a new question associated
with observations of rotational motion, which led to a recent
theoretical study of the rotation36 that remains untested.

In this article, we experimentally quantify the rotation of
cylinders falling along a soft incline. We show that there is a
steady rotation speed for finite-length cylinders that increases
with substrate deformability, qualitatively consistent with a
recently developed theory for an infinite cylinder near a soft
substrate.36 However, the latter fails to describe quantitatively
our results. We show that a complete theory that takes into
account both the elastohydrodynamic torque along the cylinder
length and the viscous friction on the edges of the cylinder is
in quantitative agreement with our experiments. In particular,
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for a given cylinder aspect ratio and incline angle, our
other experimental parameters can be combined into a single
dimensionless compliance parameter; when this compliance
increases, i.e., the thickness of the substrate increases or its
stiffness decreases, the angular velocity follows a relationship
that contains two regimes, a first one dominated by edge effects
and the second by the elastohydrodynamic stresses due to the
substrate deformation. In contrast with the theory for infinite
cylinders developed previously, here the edge effects do not
allow for the existence of simple power law behaviors in the
range of our experimental parameters.

2 Experimental system and observations

The experiments follow the same protocol as described previously,35

with metal cylinders of either aluminum or brass (densities r = 2720
and 8510 kg m�3) with radii a = 12.7 and 6.35 mm. For both
cylinders, the length L = 12.7 mm such that their respective aspect
ratios are a/L = 1 and 1/2. The cylinders are immersed in a silicone
oil bath of density roil = 970 kg m�3 and viscosity m = [0.35–30] Pa s.
They freely move down a rigid glass incline (angle varied in the range
a = [11–451]) coated with a soft gel with shear modulus G in the range
[100–3 � 105] Pa (Fig. 1(a)). The coating thickness is varied in the

range he = [100–2000] mm. The coatings are made of polydimethyl-
siloxane (PDMS) and polyacrylamide (PAA) in which we can change
the concentrations of monomers and crosslinkers to tune the shear
modulus (see experimental protocol in ESI†). The latter is measured
on an Anton Paar MCR501 rheometer with a CP50 cone-plate
geometry, using an amplitude of 0.1% for PAA and 0.5% for PDMS,
with an angular frequency of 10 rad s�1. All our samples exhibit a
rather flat storage modulus response in frequency, showing elastic
behaviors with no significant time dependencies, even for the less

Fig. 1 (a) Sketch of the experimental setup: a negatively-buoyant rigid
cylinder immersed in a viscous bath slides down a tilted wall that is coated
with a thin elastic layer. (b) Experimental image showing a side view of the soft
substrate deformation (red) by using a laser sheet with fluorescent particles
placed at the surface. The white dashed line represents the cylinder contour,
centered at x = 0. The black dashed line corresponds to the interface of the
undeformed substrate. The white solid line follows the center of the fluo-
rescent particles’ emission, obtained by using a Gaussian fit, showing the
asymmetric deformation of the substrate–fluid interface. The experimental
parameters are G = 65 kPa, he = 1.5 mm, m = 1 Pa s, a = 12.7 mm, r =
8510 kg m�3, and a = 111. Figure adapted and modified from ref. 35.

Fig. 2 (a) Evolution of the rotation angle of the cylinder as a function of
time for different shear moduli of the coating with the aluminium cylinder
of radius a = 12.7 mm. These experiments were conducted at constant
coating thickness he = 600 mm. (b) Evolution of the rotation angle as a
function of time for different coating thicknesses with the aluminum
cylinder. These experiments were made at constant shear modulus G =
31 � 103 Pa. For both panels, the viscosity and the incline angle are fixed at
m = 1 Pa s and a = 111 respectively.
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reticulated samples in both PDMS and PAA (see rheological curves
and more details on the experimental protocol in ESI†).

When the cylinder moves along the incline (undergoing both
translation and rotation), it deforms the substrate (Fig. 1(b)) and its
motion is recorded from the side with a camera. Image analysis
allows us to track the center of the cylinder and provides a direct
measurement of the translation speed of the cylinder uc, and its
rotation velocity uy = aO, with a the cylinder radius and O the
angular speed. Fig. 2(a and b) show the rotation angle as a
function of time for the aluminum cylinder for different coating
moduli and thicknesses, respectively. We observe that the rota-
tion speed O is constant, which is reminiscent of the constant
sliding speed observed earlier in similar experiments.35 We also
observe that this rotation speed decreases when the coating
becomes less deformable, i.e., when the shear modulus G
increases, or when its thickness h decreases.

3 Scaling arguments and the finite size
effect

We start by developing order-of-magnitude estimates for the
rotation speed O of a submerged finite-sized cylinder sliding
with speed uc along a wall with a soft coating. Since the cylinder
rotates with negligible inertia, the rotation speed is set by the
condition that the sum of torques due to elastohydrodynamics
(induced by the substrate’s deformation due to sliding) ts and
viscous damping of the rotational motion tO vanishes:36 tO +
ts = 0. The sliding torque itself has two contributions: one from
the curved surface of the cylinder, tcurved

s , and another one from
the ends tends

s , which we estimate below.
To estimate tcurved

s , we revisit scaling arguments for an
infinite cylinder translating along a soft layer.34,36 Due to the
confinement of the flow under the cylinder within a fluid gap of
thickness hf { a (Fig. 1a), the typical transverse length scale of

contact scales as ‘ ¼
ffiffiffiffiffiffiffiffiffi
2ahf
p

. Lubrication theory37,38 predicts a
fluid pressure p B mucc/hf

2, which then deforms the underlying
soft layer. Assuming a localized linear response of the elastic
layer to the fluid pressure (Winkler foundation approximation),

the deformation of the layer can be expressed as d ¼ he

2Gþ l
p,

where l denotes Lamé’s first parameter of the substrate. Thus,
the ratio of the characteristic deformation scale to the thickness
of the fluid layer is the compliance parameter L defined by‡

L � muchea1=2

ð2Gþ lÞh5=2f

� d
hf
: (1)

In this framework, previous theoretical studies11–16 have shown
that for L { 1 the translation of an infinite cylinder leads to an
elastohydrodynamic lift force F B Lmucc

2L/hf
2, which was con-

firmed experimentally.35 This is accompanied by an elastohydro-
dynamic sliding torque that scales nominally as mucacL/(hf + d),
where hf + d is the typical gap size between the cylinder and the
deformed substrate. We then invoke d B hfL [(1)] and expand

the previous expression in powers of L for L { 1. Recognizing
that the contributions proportional to L0 and L1 are zero for an
infinite cylinder34,38 we find that tcurved

s B L2mucacL/hf.
36

The rotational damping torque scales as tO B mOa2cL/hf;
balancing it with the sliding contribution yields the scaling
relationship36

aO
uc
� L2 ðinfinite cylinderÞ: (2)

Thus, infinite cylinders do not rotate when L = 0 (a rigid
substrate).38 However, this feature is modified for compact
bodies such as spheres, where translation and rotation are
coupled even when all boundaries are rigid.

For the finite-sized cylinders in experiments, we generically
expect a nonzero rotation rate O0(hf/a,a/L) even as L- 0 due to
three-dimensional flows near the cylinder ends. These flows
penetrate a width c into the fluid gap from the ends of
the cylinder. The shear rate Bmuc/hf acting over an effective
area Bc2 leads to an estimate of the sliding torque mucac2/hf B
muca2 due to end effects for a rigid substrate. We note that this
estimate for the torque is independent of hf despite being
generated by a lubrication flow. In lubrication flows with gap-
independent scaling estimates for torque, detailed calculations
typically reveal logarithmic corrections.39,41,42 Including such a
correction yields tends

s B muca2log(a/hf), so the total sliding
torque is ts = tcurved

s + tends
s . Then, the torque balance tO + ts = 0

yields the rotation rate with end effects included,

aO
uc
¼ k1

a

L

hf

a

� �1=2

log
a

hf

� �
þ k2L2: (3)

The first term on the right side is identified with aO0/uc (end
effects) and the second with (2) (curved surface), with constants
of proportionality k1 and k2. Thus, we expect two independent
sources of rotation, one due to end effects and another due to
the elastohydrodynamic torque over the length of the cylinder,
with distinct dependences on the parameters of the system.
Below, we will place the scaling relation (3) on quantitative
footing through detailed calculations. As we will show, there is
indeed a cross-over from end-dominated to softness-dominated
rotation in our experiments as L increases.

Despite using a compressible description here, we wish to
emphasize that this is not a necessary physical condition to
trigger rolling due to elastohydrodynamic effects. Indeed, pre-
vious works have demonstrated that these effects can emerge
from an incompressible substrate as well.19,36 But scalings
available in the literature correspond to the limiting cases of
thick (he/l c 1) and thin (he/l { 1) layers while our case
corresponds to an intermediate regime. We estimate c B
(3a/4)L tan a A [0.3, 1.2] mm, so that he/c A [0.1, 2]. A theory
for such an intermediate regime has only been developed at
first order in dimensionless compliance,13 thus not considering
the rolling motion. Further developments with such a finite-
thickness incompressible model are beyond the focus of this
work, whose main aim is to address end effects and their
consequences for long and short rolling cylinders.‡ The definition of L here differs from the one in ref. 36 by a factor of

ffiffiffi
2
p

.
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4 Theory

As discussed above, two-dimensional theory predicts zero hydro-
dynamic torque on a non-rotating (infinite) cylinder sliding along
rigid walls (L = 0). We show below that three-dimensional end-
effects qualitatively modify this result for a cylinder. End effects are
confined to a penetration depth c into the lubrication gap, so both
ends are hydrodynamically isolated in our experiments since
L = O(a) c c. We focus on the flow near one of the ends, which
we place at y = 0 so that the gap lies in y 4 0. It is convenient to
introduce dimensionless coordinates (X,Y) = (x,y)/c, and a dimen-
sionless lubrication pressure P(X,Y) = p(x, y)/(mucc/hf

2). Since the gap
thickness abruptly diverges at the ends of the cylinder, P must
vanish at Y = 0. We consider end-effects in the limit of L - 0
(a rigid substrate), so the gap is approximately parabolic, h(x) =
hf + x2/(2a). Defining the dimensionless gap profile H(X) = h(x)/hf =
1 + X2, the pressure in the gap satisfies the Reynolds equation

r�(H3rP + 6HeX) = 0, subject to (4a)

PðX; 0Þ ¼ @P

@Y
ðX ;1Þ ¼ Pð�1;YÞ ¼ 0; (4b)

where r = eX@X + eY@Y.
We seek a solution P(X,Y) = P2d(X) + P0(X,Y), where P2d(X) =

2X/(1 + X2)2 is the pressure due to an sliding infinite cylinder,
which satisfies (4) except for the condition at Y = 0. As we
discuss below, it is sufficient to analyze the large-X behavior of
P0. Defining Z = Y/X (the tangent of the angle in the XY plane),
we seek an asymptotic solution in inverse powers of X with the
form P0ðX � 1;YÞ �

P
n

X�nfnðZÞ. From the boundary condi-

tion at Y = 0 and the asymptotic behavior P2d(X c 1) B 2X�3, it
is clear that the leading term of the expansion introduced above
is P0(X c 1,Y) B �2X�3Q(Z). Substituting this expression into
(4a) and retaining the most slowly decaying terms at large
X yields

1þ Z2
� � d2Q

dZ2
þ 2Z

dQ

dZ
� 6Q ¼ 0; subject to (5a)

Qð0Þ ¼ 1 and
dQ

dZ

����
Z!1
! 0; (5b)

which admits the solution

QðZÞ ¼ 3Z2 þ 1
� �

1� 2

p
arctan Z

� �
� 6Z

p
: (6)

This determines the asymptotic behavior P0(X c 1,Y) B
�2X�3Q(Y,X). The perturbation scheme can developed further
to obtain corrections to P0 [the next term is of the form X�5f5(Z)]
although the leading term suffices for our purposes. A similar
pressure distribution is generated at the opposite edge of the
cylinder. We find from (6) that for fixed X c 1, the leading-
order solution to the end-pressure decays as Y�3 as Y - N.
Since the opposite edge of the cylinder is at Y = L/c, corrections
to the pressure due to overlapping of the two end solutions are
expected to scale as c3/L3 B a3/2hf

3/2/L3 and are thus small for
L = O(a).

The X-component of the dimensionless horizontal velocity
in the reference frame of the sliding cylinder, expressed in units

of uc is VX ¼
1

2
ZðZ �HÞ @P

@X
þ Z �H

H
, where Z = z/hf is the

dimensionless coordinate spanning the fluid gap (see Fig. 1).
The component of the shear stress responsible for its rotation,

in units of muc/h, is sXZ ¼
@VX

@Z

����
Z¼H
¼ H

2

@P

@X
þ 1

H
, whose integral

over the area of the lubrication gap yields the hydrodynamic
sliding torque on the cylinder. Noting the symmetry of sXZ

about X = 0, including both (hydrodynamically non-interacting)
ends of the cylinder, and recalling that the torque generated
by the two-dimensional case is identically zero, the dimension-
less torque can be expressed (in units of mucac2/hf) as

4
ÐX1
0

Ð1
0

H

2

@P0

@X
dYdX, where XN represents the outer ‘‘edge’’

of the lubrication gap. As is typical in lubrication flows with
constant-curvature gap profiles, this outer limit corresponds to
the radius of the cylinder [x = O(a)], which gives X = O(a/c).40 An
estimate of the previous integral at large X shows that it
diverges as log XN. Formally, we make a change of variables
in the integral from (X,Y) to (X,Z) and isolate the divergence to
obtain the dimensional sliding torque

tc ¼
4muca‘2

hf

ðX1
0

ð1
0

1

X
3Qþ Z

dQ

dZ

� �
dZdX

¼ 32

3p
muca2 log

a

hf

� �
þ c

� �
:

(7)

The constant c absorbs the ambiguity in defining XN, non-
singular contributions from the lubrication flow (i.e., from
terms of P0 decaying as X�5 or faster) and the torque due to
end-effects outside the fluid gap. The latter contribution
includes the torque on the flat faces of the cylinder, which is
generated by stresses of O(muc/a) acting over an area of O(a2)
with a moment arm of O(a). Evaluating c requires a matched
asymptotic approach that we do not pursue here; instead we
will estimate it from a fit to our experiments. The result (7) is
reminiscent of the torque on a translating sphere of radius a,
for which the factor of 32/(3p) is replaced by 4p/5 and the
constant c E �1.895.39

Since the cylinder is free to rotate and has negligible inertia,
the sum of the sliding torque and the rotational torque

tO ¼ �2
ffiffiffi
2
p

pma2LO0 a=hfð Þ1=2 38 vanishes, yielding the rotation
rate of a translating finite cylinder near a rigid wall

aO0

uc
¼ 8

ffiffiffi
2
p

3p2
a

L

hf

a

� �1=2

log
a

hf

� �
þ c

� �
: (8)

This result is expected to dominate for stiff substrates (L { 1)
in our experiments. The leading contribution to O due to the
softness of the substrate (denoted O2) was shown for an infinite
cylinder36 to be aO2/uc = (21/128)L2. Modifications to O2 due to
end effects scale as c/L { 1 and will be neglected here.
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Thus, the angular speed of a translating finite cylinder is
O E O0 + O2, or

aO
uc
¼ 8

ffiffiffi
2
p

3p2
a

L

hf

a

� �1=2

log
a

hf

� �
þ c

� �
þ 21

128
L2: (9)

This theoretical prediction makes precise the estimate (3) and
reduces to the infinite-cylinder and the rigid-wall results in the
respective limits a/L - 0 and L - 0.

For gravity-driven motion along a soft incline the translation
speed uc and the gap thickness hf are not independently
controlled quantities. Rather, they are set simultaneously by a
balance of the cylinder’s buoyant weight, the elastohydro-
dynamic lift force and the hydrodynamic drag on the cylinder
and are therefore determined by the physical and geometric
properties of the system.34,35 Introducing the Poisson ratio n [so
that l = 2Gn/(1 � 2n)] and using known results,34,36 the
dimensionless compliance L, defined in (1), can be recast as

L ¼ 221=10

34=5
1� 2n
1� n

� �1=5
( )

k; where (10a)

k ¼ r	ghe cos a
2G tan3 a

� �1=5

and r	 ¼ r� roil: (10b)

The fluid gap thickness hf for gravity-driven sliding can be
expressed as34,36

hf

a
¼ 3

8
L tan a

� �2

(11)

All parameters involved in k [defined in (10b)] are either known
or directly measured in our experiments. The right hand side in
(10a) is a dimensionless quantity that depends on the Poisson
ratio n, albeit only weakly. In the range of interest for hydrogels
(i.e., 0.45 ono 0.495), this quantity takes values between 1.25
(for n = 0.45) and 0.8 (for n = 0.495) and thus remains of order
unity in the experimentally-relevant range. Finally, we substi-
tute (11) into (9) to the angular speed for gravity-driven motion
near a thin, compressible coating on an incline of angle a;

aO
uc
¼

ffiffiffi
2
p

a

p2L
ðL tan aÞ 2 log

8

3L tan a

� �
þ c

� �

þ 21

128
L2:

(12)

End effects dominate the rotation rate at small L, although the gap
thickness is still set by elastohydrodynamic stresses. The term
quadratic in L becomes important when L \ (a/L)tana. In the
limit of very stiff substrates, we expect aO/uc p (he/G)1/5 log(G/he), in
contrast with the two-dimensional prediction aO/uc p (he/G)2/5.

5 Comparison between experiments
and theory

We now compare the prediction of the theory with the results of
the experiments. The evaluation of the compliance L in (1) and
(10a) requires us to know the value of the Poisson ratio n. For a

given system, experimental measurements of the Poisson ratio
appear to be sensitive to protocols, sample geometries and
chemical compositions. In experimental conditions similar to
ours, previous works reported values ranging in [0.46–0.47] for
PAA and in [0.47–0.48] for PDMS.43–45 Note that values as high as

Fig. 3 (a) Dimensionless angular velocity aO/uc as a function of the elastic
substrate’s shear modulus G, for the aluminum cylinder of radius a =
12.7 mm (a/L = 1), and the brass cylinder, of radius a = 6.35 mm (a/L = 1/2).
The thickness of the elastic substrate is he = 600 mm. The solid lines
correspond to the theoretical prediction of (9) for a/L = 1 (red) and a/L = 1/2
(blue) with c = �0.715. (b) Dimensionless angular velocity aO/uc as a
function of the elastic substrate’s thickness he, for the aluminum cylinder
of radius a = 12.7 mm (a/L = 1), and the brass cylinder of radius a = 6.35 mm
(a/L = 1/2). The shear modulus of the elastic substrate is G = 31� 103 Pa. The
solid lines correspond to the theoretical prediction (9) for a/L = 1 (red) and
a/L = 1/2 (blue) with c = �0.715 as a fit parameter. For both studies, the
viscosity and incline angle are m = 1 Pa s and a = 111 respectively. The
standard deviation obtained from the angle measurements as a function of
time, and averaged on all the experimental points, is 0.05.
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0.496 have also been reported in the latter case when changing
the experimental protocol.46 We choose the central value n = 0.47
to compare our theory with experimental data, although as
indicated in ESI,† the results are relatively insensitive to the
choice of n in the experimentally-relevant range: 0.45–0.49.

The theoretical prediction for the scaled rotational speed
aO/uc in (9) includes a constant c that is expected to be
independent of the compliance L. As c/L { 1 we assume the
end flows to be decoupled from each other and we thus expect c
to be independent as well of the aspect ratio of the cylinder. In
order to compare the theory to the experiments we force c to be
the same for experiments involving different cylinders (and
thus aspect ratios). In Fig. 3, we show the behavior of the scaled
angular speed aO/uc as a function of the coating film’s shear
modulus G (Fig. 3a) and thickness he (Fig. 3b). We observe
that the finite-size theory, which includes both the cylinder
edge-effect term and an elastohydrodynamic term (the latter
corresponding to an infinite soft-lubricated cylinder) predicts
remarkably well the experimental results with a single constant
c =�0.715, with increasing scaled angular velocities for decreasing
stiffness G and increasing coating thickness he (increasing k). The
value for c is consistent with the typical value obtained for a sphere
near a rigid wall (c E �1.89539).

Combining all these experimental results allows us to plot a
master curve for aO/uc as a function of the modified scaled

compliance k ¼ r	ghe cos a
2G tan2 a

� �1=5

, as shown in Fig. 4(a). We

choose to plot the data as a function of k rather than L as
the former can be calculated from experimental parameters
that we can directly measure, and is independent of n. The
values of k are very similar to those of L for n = 0.47 (L E
1.15k). In fact the factor between L and k is rather insensitive to
n (e.g. about 0.93 for n = 0.49), and so k is a good physical
estimate of the scaled compliance L for our experimental
conditions. We observe that, with a unique constant c =
�0.715, the experimental results are consistent with the theo-
retical master curves (curves showing that the choice of n does
not affect this agreement within the aforementioned range are
shown in ESI†). In Fig. 4(b), we have plotted the values
measured for aO/uc as a function of its theoretical prediction
from (9), for the same c constant and the same data as in
Fig. 4(a), but also with experiments where all parameters were
varied, including the inclination angle. This unique master
curve for both cylinders confirms the good agreement between
theory and experiments over more than a decade.

6 Discussion

We have also plotted separately the contributions of both terms
in (9), namely the contribution of end effects for a finite-length
cylinder, and the elastohydrodynamic contribution for an infi-
nite cylinder, as shown in Fig. 4(a). Our experimental data lie in
the crossover region between these two limiting behaviors. At
high values of the compliance i.e., for soft or thick substrates,
the experimental data for both aspect ratios appear to collapse

together and converge toward the infinite cylinder theory,
consistent with a regime where edge effects (and thus cylinder
length) do not affect the rotation behavior. We note that at
intermediate values of the compliance, edges effects tend to

Fig. 4 (a) Experimental dimensionless angular velocity aO/uc as a function

of the modified scaled compliance k ¼ r	ghe cos a
2G tan2 a

� �1=5

. The red symbols

correspond to the aluminum cylinder with a/L = 1, while the blue symbols
correspond to the brass cylinder with a/L = 1/2. The circles and the squares
correspond, respectively, to variations in G and he. The black dashed line
corresponds to the infinite cylinder case (9) with a/L = 0, n = 0.47. The
colored dashed lines correspond to the theory taking into account only the
end effect (8), with c = �0.715. The solid lines corresponds to the finite-size
theory (9), with c = �0.715. (b) Experimental scaled angular velocity (aO/uc)exp

as a function of the theoretical scaled angular velocity (aO/uc)theory (9). Red
circles – aluminum cylinder with a/L = 1, blue circles – brass cylinder with a/L =
1/2, triangles – aluminum cylinder (a/L = 1) with viscosities m A [0.35–30] Pa s,
incline angles a A [11–451], moduli G A [16–280] kPa, thicknesses he A [300–
1000] mm, and the black line has slope 1.
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increase the scaled angular velocity with respect to the infinite-
cylinder prediction. Finally, at small compliances, the elastohy-
drodynamic torque does not affect the rotation anymore, and
the latter is solely generated by end effects (near a rigid wall).
The crossover location depends on the aspect ratio. We can
indeed see that, for the brass cylinder with a/L = 1/2, the
rotation behavior is closer to the infinite cylinder one than in
the case of the aluminum cylinder, with a/L = 1, where end
effects play a more significant role.

It is also interesting to note that the theory predicts an
angular velocity either smaller or larger than in aO/uc B 1. The
latter regime corresponds to the rolling of a cylinder in no-slip
dry contact with a rigid incline and should be reached in our
system typically for k B 2. However, the range of parameters
explored in our experiments could not allow us to verify the
existence of ‘‘super-rolling’’ behaviors for higher compliances.

7 Conclusion

Our experiments on the rotation of an immersed finite-size
cylinder moving down and near a soft incline have shown that
there is a steady-state rotation with an angular speed that
increases with the compliance of the substrate. While this
observation is qualitatively consistent with a recent theoretical
prediction for an infinite cylinder,36 this earlier infinite cylinder
(2D) theory fails to describe our experimental observations
quantitatively. A modified theoretical description for a finite-
length cylinder that takes into account the additional torque
created by viscous friction on both its edges does allow for a
quantitative agreement with our experiments, which are typical
of many applications. In particular, we have shown that for small
compliances and small cylinder lengths, the contribution of
the elastohydrodynamic torque to the rotation becomes small
relative to those contributions from end effects, even when the
gap thickness is still set by a finite elastohydrodynamic lift force.
This result gives more realistic insights on the behaviors of
finite-size objects in motion or in interaction close to soft
interfaces, and pave the way for new theoretical developments
accounting for geometric and mechanical properties that are
relevant to more specific biological, geophysical and engineering
processes. In particular, further work to develop a complete
finite-size incompressible theory would clarify the relevance of
the use of a compressible model versus an incompressible one in
the aforementioned contexts.
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