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Inertial forces in the Maxey–Riley equation in nonuniform flows
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The Maxey–Riley equation describes the motion of a spherical particle suspended in a
spatially nonuniform, time-dependent flow, and finds applications in a wide range of flow
situations. We reexamine the hydrodynamics underlying the Maxey–Riley equation to find
additional inertial forces associated with second gradients of the background flow velocity,
not accounted for in the original framework. These forces amplify inertial Faxén terms
threefold, while also contributing advective terms that are quadratic in fluid velocity and
may exceed Faxén forces in some flows. We present a more comprehensive form of the
Maxey–Riley equation that includes these contributions, and discuss its implications for
particle dynamics in flows with curvature.
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The Maxey–Riley equation [1,2] is a statement of momentum conservation of a spherical particle
suspended in a spatially nonuniform, time-dependent fluid flow. Along with its variants (cf. the
review by Michaelidis [3]) it has been widely used to model particle transport in a range of
applications including microfluidic particle sorting [4,5], multiphase turbulence [6], and ocean
surface transport [7]. Maxey and Riley [1] consider a rigid sphere of radius a and mass mp suspended
in a Newtonian fluid of density ρ and viscosity μ. The flow in the absence of the particle (referred to
as the background flow) has a known velocity u(x, t ) that satisfies the incompressible Navier–Stokes
equations

ρ

(
∂u
∂t

+ u · ∇u
)

= ∇ · σ (0) + ρg, ∇ · u = 0. (1)

Here, σ (0) is the stress tensor of the background flow and g is the acceleration due to gravity.
The particle’s center is located at X(t ) and translates with velocity V(t ) = dX/dt , producing a
disturbance flow u′(x, t ) (stress σ ′) so that the net flow v = u + u′ (stress σ (0) + σ ′) continues to
solve the incompressible Navier–Stokes equations.

The fluid exerts a force
∫

Sp
n · (σ (0) + σ ′)dS on the particle, where n is the fluid-facing unit

normal to the particle surface Sp. The force contributed by the background flow, which we will
return to as the focus of this Letter, is defined by F(0) = ∫

Sp
n · σ (0)dS and is approximated by

Maxey and Riley as (cf. (25) of [1])

F(0) ≈ −m f g + m f
Du
Dt

, (2)

where m f = 4
3πa3ρ and D

Dt ≡ ∂
∂t + (u · ∇ ) is the material derivative in the background flow. Maxey

and Riley then use the unsteady Stokes equations to approximate the disturbance flow u′ and
calculate the associated force F′ = ∫

Sp
n · σ ′dS. Applying Newton’s second law to the particle
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(mpdV/dt = mpg + F(0) + F′) yields the Maxey–Riley equation which, in the form originally
derived [1] and remains widely used [8–11], reads

mp
d V
dt

= (mp − m f )g + m f
Du
Dt

∣∣∣∣
X(t )

− 1

2
m f

d

dt

(
V − u − a2

10
∇2u

)∣∣∣∣
X(t )

− 6πμa

(
V − u − a2

6
∇2u

)∣∣∣∣
X(t )

− 6πμa2
∫ t

0

dτ√
πν(t − τ )

d

dτ

(
V(τ ) − u − a2

6
∇2u

)∣∣∣∣
X(τ )

, (3)

where ν = μ/ρ. Equation (3) accounts for buoyancy, fluid inertia, added-mass, viscous drag, and the
Basset–Boussinseq–Oseen history force. The latter three forces also contain Faxén terms (involving
a2∇2u) whose importance is determined by the particle size relative to the characteristic length scale
of the flow and are relevant across a range of flows involving either particles or bubbles [4,12–14].

Several modifications of (3) have also been developed, often to account for the effects of
advective inertia on F′ [3]. The most widely used of these [8,15,16] is due to Auton et al. [17]
and replaces the added mass term 1

2 m f
d
dt (u + a2

10∇2u) by 1
2 m f

D
Dt (u + a2

10∇2u). Lovalenti and Brady
[18] showed that advective inertia suppresses history forces. Other authors have modified (3) to
include forces from shear-induced lift [12] (see [19]) or interactions with boundaries [5,20].

The focus of this work is the background force F(0), independent of effects associated with
the disturbance flow. We show that (2) is merely the leading term of an expansion that includes
additional terms involving the velocity curvature tensor ∇∇u. Since the background flow is defined
everywhere (in particular inside the volume Vp occupied by the particle), we use the divergence
theorem to transform the surface integral F(0) = ∫

Sp
n · σ (0)dS into an integral over the particle

volume and invoke (1) to write

F(0) =
∫

Vp

∇ · σ (0)dV = ρ

∫
Vp

(Du
Dt

− g
)

dV. (4)

Approximating Du/Dt as uniform over the particle volume leads to the Maxey–Riley result (2) (cf.
Eqs. (20)–(25) of [1]). More generally Du/Dt has spatial variations and can be expressed inside Vp

using a Taylor series about the instantaneous particle center as

Du
Dt

= Du
Dt

∣∣∣∣
X(t )

+ r · ∇ Du
Dt

∣∣∣∣
X(t )

+ 1

2
rr : ∇∇

(Du
Dt

)∣∣∣∣
X(t )

+ · · · , (5)

where r = x − X(t ) = rn is the instantaneous position vector relative to the center of the particle.
Writing

∫
Vp

(·)dV = ∫ a
0

∫
�

(·) r2d�dr, where � is the solid angle, and evaluating the integral in (4)
yields

F(0) = −m f g + m f

{
Du
Dt

+ a2

10
∇2

(Du
Dt

)
+ · · ·

}∣∣∣∣
X(t )

, (6)

up to a leading error term of m f
a4

280∇4
(

Du
Dt

)∣∣
X(t ). Contrasting (6) with (2) makes clear the additional

contributions in (6) involving the curvature of the background velocity u. Note that the original
derivation of Maxey and Riley uses expansions analogous to (5) to calculate F′ [leading to Faxén
terms in (3)] but neglects their contributions to F(0) [1]. The additional term in (6) was previously
recognized by Gatignol (cf. Eq. (44) of [2]) and by others [13,21,22] in different contexts, although
their relevance to the Maxey–Riley framework appears not to have been noted.
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Using (6) in the particle momentum equation mpdV/dt = mpg + F(0) + F′ while retaining the
unsteady Stokes approximation for F′ as in [1] yields our main result for the dynamics of the particle,

mp
d V
dt

= (mp − m f )g + m f

{
D

Dt

(
u + a2

10
∇2u

)
+ a2

10
∇2u · ∇u + a2

5
∇u : ∇∇u

}∣∣∣∣
X(t )

− 1

2
m f

d

dt

(
V − u − a2

10
∇2u

)∣∣∣∣
X(t )

− 6πμa

(
V − u − a2

6
∇2u

)∣∣∣∣
X(t )

− 6πμa2
∫ t

0

dτ√
πν(t − τ )

d

dτ

(
V(τ ) − u − a2

6
∇2u

)∣∣∣∣
X(τ )

, (7)

where we have written out ∇2( Du
Dt ) = D (∇2u)

Dt + ∇2u · ∇u + 2∇u : ∇∇u. Equation (7) is a self-
consistent modification of (3) to include contributions from the curvature of the background flow,
and should be used in situations where gradients of the flow are appreciable on the scale of the
particle. Due to the approximation of F ′, (7) is formally accurate to linear order in u for locally
quadratic flows, even though F (0) fully accounts for the inertia of the background flow.

The primary quantitative effect of including the background curvature terms in (7) is the modi-
fication of Faxén accelerations from 1

20 m f a2 d
dt (∇2u) to 1

20 m f a2( d
dt + 2 D

Dt )∇2u, which is a roughly
threefold increase (typically d/dt ≈ D/Dt for small particles). An important qualitative addition in
(7) is the term 1

5 m f a2∇u : ∇∇u, which is the only force that depends on the full velocity curvature
tensor ∇∇u, and may dominate Faxén terms in flows with small ∇2u. For example, a particle that
is density matched with the fluid and suspended in background potential flow (∇2u = 0) deviates
from fluid trajectories due to the m f a2∇u : ∇∇u term even though all Faxén forces (which scale
with a2∇2u) are identically zero.

We emphasize that the curvature contributions discussed here are part of the force from the
background flow F(0) and have no bearing on forces due to the disturbance flow F′. In particular,
contributions to F′ associated with the advective inertia of u′ have been neglected in (7) as
in the original Maxey–Riley formulation. These terms can be important and may be separately
accounted for as discussed earlier, e.g., the Auton added mass or shear-induced lift. Another inertial
contribution to F′ involving flow curvature can be gleaned from the analysis of Lhuillier [23], who
showed that for potential flow (both background and disturbance) the disturbance flow contributes
a force of 2

15 m f a2∇u : ∇∇u. This term may be added to the right side of (7), although it is unclear
how it is modified in a general setting with finite vorticity.

In summary, the present work presents a modification to the Maxey–Riley equation due to the
inertia of a spatially varying background flow, leading to the main result (7). Relative to the original
Maxey–Riley formalism, the additional force contributions amplify inertial Faxén terms by a factor
of 3, while also introducing terms that are quadratic in the background flow and depend on the
velocity gradient and curvature. These modifications are significant when the size of the particle
is appreciable relative to characteristic length scale of the flow, as is the case in many microscopic
and macroscopic systems [4,12,13]. Their incorporation into the Maxey–Riley equation may further
broaden its scope as a tool for inertial particle dynamics in nonuniform flows.

The author thanks Siddhansh Agarwal, Sascha Hilgenfeldt, and Howard A. Stone for fruitful
discussions. The author is grateful for support from a Hellman Fellowship and the Bourns College
of Engineering at UCR.
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