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In this work, a systematic approach to efficient open flow mixing is introduced, using
general theoretical concepts to identify optimized parameters of a deliberately introduced
unsteady flow component. The method is applied in detail to two-dimensional (2D)
advective mixing in flows resulting from the superposition of a transport flow through
a channel and secondary localized cross-flows, here the vortical streaming due to a
microbubble array. A simple description of stirring in a steady 2D vortex identifies the
characteristic time beyond which vortex stirring becomes ineffective, with slow algebraic
decay of the mix-variance. Duty cycling of the vortices introduces flow unsteadiness,
for which optimum duty cycling protocols are identified, following analytically from a
few selected Eulerian properties of the combined transport and vortex stirring flow. In
comparison with experiments and simulations, it is shown that this simple formalism
allows for the accurate prediction of optimal advective mixing, exponential in time, in the
microbubble streaming case and, by extension, for any open-flow mixer with modulated
secondary flow. Taking into account the effect of diffusion, estimated residence times
required for complete mixing in such optimized devices are obtained.
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I. INTRODUCTION

Fluid mixing is a crucial part of many biological and industrial processes, where it is often
desirable to homogenize two or more initially separate substances to aid a chemical reaction [1–3].
Mixing in general occurs as a combination of advection (stirring), which increases the surface area
of contact between the two species by stretching and folding of fluid elements, and diffusion, which
is ultimately responsible for homogenization at the molecular scale [4–6]. At macroscopic scales,
fluid inertia allows the different species to continuously generate advective structures at small length
scales (e.g., due to turbulence), which results in diffusion quickly homogenizing the mixture [7,8].
In most microfluidics applications, however, fluid inertia is negligible (small Reynolds numbers),
making flows laminar [7,9,10], while the time required for mixing by diffusion alone over typical
channel sizes used in microfluidics is prohibitively long for most applications [11]. The focus of
mixing studies at the microscale has therefore been on tailoring protocols of stirring the fluid in
order to establish advective patterns at finer length scales, which are then rapidly homogenized by
diffusion [12–14]. Such optimal stirring protocols have been studied theoretically, focusing primarily
on mixing in closed systems with zero throughput in often idealized situations (e.g., blinking vortices
[15], linked-twist maps [16,17]).
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Since it is usually desirable to have a continuous throughput through practical micromixing
devices, the primary transport flow through the channel is augmented with secondary cross flows to
obtain a flow with improved mixing properties. These cross flows are actuated either by geometric
features built into the construction of the device (passive) [9,18,19] or by an external energy source
(active) making use of driving forces such as dielectrophoresis or thermal currents [7,20,21]. In many
cases, the cross flows are locally actuated and therefore have decaying flow strength away from the
actuator, resulting in vortical flow structures [7,9]. Such vortical cross flows can be produced by
a number of actuation methods, e.g., using high-frequency acoustics (including surface acoustic
waves) [22–26] or electrokinetics [27–29].

The strength of the cross flow relative to the transport flow determines the topology of the resulting
flow and thereby its mixing properties. Weak cross flows only slightly modify the flow pattern and
allow continuous transport of fluid elements through the device, but at the cost of long mixing times
and channel lengths. By contrast, strong cross flows establish local vortex patterns, which offer better
mixing capabilities but invariably establish localized recirculation regions, preventing mixed fluid
from being efficiently transported through the channel. This makes it necessary to actively modulate
the secondary flow to achieve rapid mixing at a high throughput.

Which temporal modulation protocol yields optimal results for a given open-flow vortex mixer?
This question has not been addressed systematically, and it is the main focus of the present study
to identify optimal protocols of engineering flow unsteadiness through duty cycling, providing
useful guidelines for the design of efficient mixing devices. Using general physical and geometric
arguments, we develop a theoretical framework that identifies both the optimal duty cycle and the
maximal mixing rate as a function of the properties of the vortices and the throughput through the
channel. These theoretical arguments are applied to the specific case of a microbubble mixing array,
where they are shown to be in quantitative agreement with both experiments and simulations of
mixing. The theoretical framework is not tied to a specific driving mechanism or flow and thus
provides general rules to optimize unsteadiness open flow micromixers with vortical cross flows.
The generality of the approach will be emphasized throughout the subsequent development.

The setup and methods are described in Sec. II. In Sec. III we first quantify some features of
mixing without time modulation; while the mixing in this case is poor, this analysis provides us
with the length and time scales that are crucial to designing optimum time-modulated mixers.
We then demonstrate that the introduction of unsteadiness by means of duty cycling of the
vortices results in exponentially fast mixing. Using simple physical and geometric arguments,
we develop a general theoretical framework that predicts both the optimal duty cycle pattern and
the rate of mixing. Through experimental data and numerical simulations, we then demonstrate
that the theory quantitatively predicts the optimal mixing protocol. We then estimate the
typical residence time in the mixer before diffusion homogenizes the mixture; Sec. IV presents
conclusions.

II. SETUP AND METHODS

While the physical arguments for optimal mixing that we develop are generally applicable
to vortical flows, it is useful to discuss the general ideas applied to a concrete problem, in
particular to validate the arguments against the results of experiments and numerical simulations.
As a model vortex-based micromixer in which the fluid flow is well understood theoretically and
experimentally, we consider here an array of acoustically excited microbubbles attached to the walls
of a microchannel. This type of device is known as a simple and robust method of microfluidic flow
actuation, in which applied acoustic energy (at ultrasound frequencies) is rectified into a powerful
steady streaming flow. Ease of manufacture and actuation makes bubble-based devices particularly
attractive for microfluidics, where they have been utilized for a variety of applications such as shear
force actuation [30], particle trapping and focusing [31,32], size sorting [33], and fluid mixing
[34–37]. Such microbubble-driven flows are well understood analytically [33,38] and have been
shown to lend themselves well to temporal modulation [36,39] by tuning the driving amplitude.
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FIG. 1. (a) Typical open flow micromixer design showing inlets from which initially unmixed fluid
streams are introduced towards an array of actuators—here acoustically excited microbubbles—located in
the main channel a distance L = 2h apart. The ultrasound drives vortical microbubble streaming flow whose
strength may be temporally modulated by applying a time-dependent voltage amplitude to the piezo-transducer.
(b) Path lines of the typical 2D flow around a bubble [region shaded gray in (a)] resulting from an excitation
of the streaming in the presence of a finite flow rate Q through the channel. The flow consists of both open
and closed regions (upstream and downstream vortices) divided by a separatrix (red solid line). (c) Schematic
of a close-up of the square box in (b): Much of the incoming flow is funneled into a narrow gap of width dgap

between the bubble surface and the separatrix, where diffusive mixing is important at long times. The bubble
radius is a = 40 μm, and the channel height h = 250 μm in experiments.

The geometry of the setup considered here for open-flow micromixing is illustrated in Fig. 1(a),
indicating the location of an array of bubbles relative to the inlets and outlets of the microfluidic
channel. The bubbles are attached to a wall of the microchannel by means of blind side channels
of width 2a, which protrude from the main channel. The main channel has a rectangular cross
section with a height h in the y direction [indicated in Fig. 1(b)] and a depth d (not shown). The
rectangular geometry of the side channel establishes a bubble of semicylindrical shape (semicircular
cross section), of radius a and whose cylindrical axis spans the entire channel depth d. The bubble-
to-bubble distance in our experiments along the x axis is L = 2h. Figure 1 shows a representative
cross section of the channel perpendicular to the bubble axis.

The application of ultrasound at a frequency f ∼ 1–100 kHz establishes oscillations of the
bubble interface with a characteristic amplitude εa, which, through a rectification of the acoustic
energy, drives a secondary steady flow (streaming) with a characteristic speed us = 2πε2af . Due to
the cylindrical symmetry of the bubble, the streaming is approximately confined to cross-sectional
planes perpendicular to the bubble axis [two-dimensional (2D) flow] and is characterized by a pair
of steady counter-rotating vortices [36,38,40]. In addition to the streaming, there is a net transport of
fluid through the channel due to an imposed transport (Poiseuille) flow with a volumetric flow rate
Q. The net flow resulting from the steady combination of the Poiseuille flow through the channel and
the bubble-driven streaming consists of regions of open streamlines in addition to closed upstream
and downstream vortices, as shown in Fig. 1(b); the majority of the total flow rate is forced through
a thin gap between bubble surface and upstream vortex [Fig. 1(c)], a feature important for the action
of diffusion; cf. Sec. III E. Similar flow structures have been obtained using other actuation methods,
e.g., using surface acoustic waves [25] or electroconvection [41].

A. Experiments

The microbubble-based mixing devices are fabricated in polydimethylsiloxane using standard soft
lithography techniques [42], described in more detail elsewhere [39]. We use a T-shaped microfluidic
mixer structure that consists of a main channel of height h = 250 μm and depth d = 100 μm, two
inlets, and one or more side channels, which are either all on the same side of the main channel
[as in Fig. 1(a)] or staggered [alternating on opposite sides; cf. Fig. 2(a) for an experimental image].

When liquids are introduced from the inlets, air is trapped inside the side channels automatically
forming semicylindrical bubbles of the type discussed above. Microbubbles in planar microfluidic
devices like these are often used to generate steady streaming flows of approximately 2D character
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FIG. 2. Mixing in a superposition of steady transport flow and steady bubble streaming [cf. Fig. 1(c)] in a
staggered microbubble array. (a) Experiment with fluorescent nanoparticles, brightness indicating local particle
concentration. The fluorescence intensities of the bright and dark streams before they meet (respectively Cmax

and Cmin) are evaluated in the regions enclosed by shaded rectangles and are used to compute the normalized
intensity c(x,t) in experiments. The dashed square indicates a region of interest for the evaluation of �2 and is
typically located downstream of the bubble and spans all or most of the channel height. (b) Mixing field within
the white rectangle indicated in (a) around the bubble labeled 3. (c) Mixing simulation by Lagrangian particle
advection at infinite Pe with periodic boundary conditions at a time t = 2×(2h)/up . This is the mean transport
time between the bubbles labeled 1 and 3 in (a) and hence serves as the numerical counterpart of (b); note that
the bubble labeled 0 in the experiment does not get excited by the ultrasound (possibly due to its proximity
to the corners of the geometry). The finer structures in (c) do not appear in (b) partly due to limited optical
resolution and partly due to diffusive mixing.

[31], greatly improving the ability to both quantitatively control and quantitatively predict the flow
[32,36,38].

A syringe pump is used to infuse two liquid streams through the two inlets; one liquid stream is
DI water containing fluorescent polystyrene particles (radius ap = 50 nm, Life Technologies), the
other stream consists of the same fluid but without fluorescent particles. Each stream has equal flow
rate Q/2. We use a mercury-vapor lamp as the light source through an epi-fluorescence attachment,
with excitation and emission filter wavelengths of ≈460 nm and ≈520 nm, respectively. Under the
illumination, the emission from the fluorescent particles is captured and recorded by a high-speed
camera. In the range of particle concentrations employed in our experiments (�1% by volume), the
gray scale intensity (fluorescent signal C) of the image is proportional to the particle concentration
in the liquid [43,44], so that the fluorescent signal distribution quantifies mixing of the particles, as
in many other studies [43,45,46].

The Stokes-Einstein diffusion coefficient of the nanoparticles in a fluid of dynamic viscosity μ is
Dp = kBT /(6πμap) ≈ 1.6×10−12 m2 s−1, and the diffusion time scale across the channel height
can be estimated as td ∼ h2/(4Dp) ≈ 104 s. The residence time of a patch of fluid in the device
is typically a few seconds in the present experimental setups, much shorter than the time required
for mixing by diffusion alone. Thus, choosing nanoparticles rather than more rapidly diffusing dye
molecules allows us to evaluate and optimize the mixing effect of the bubble streaming flow field
due to advection alone, independent of diffusive effects. The iterative (and optimized) application of
modulated streaming flow will eventually lead to characteristic length scales of particle concentration
patterns small enough for diffusion to become effective (cf. Sec. III E).
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B. Flow field and mixing simulations

We are interested in the general mixing properties of the combination of a Poiseuille flow
(transport) and a vortex flow (streaming). For a kinematic viscosity ν of the fluid, the maximal
streaming Reynolds number Res ≡ usa/ν (corresponding to flow speeds very close to the bubble)
is typically in the range 0.3 � Res � 7, while flow speeds decay strongly at larger distances to
the bubble surface [38]. The streaming flow is well described by leading order theory (Res → 0)
up to Rep � O(10), suggesting that the inertia of the steady streaming plays only a small role
under typical experimental conditions [47]. The Reynolds number associated with the Poiseuille
flow Rep ≡ Q/(hd) × h/ν (corresponding to gradients on scale of the channel height) is typically
O(0.01). The net flow can therefore be accurately quantified by a linear superposition of the individual
flows, as confirmed in Ref. [33].

The cylindrical bubble geometry causes the secondary flow to be approximately 2D in the xy

planes perpendicular to the bubble axis; see Fig. 1(b). The 2D streaming velocity field us(x,y) has
been determined analytically for wide channels h/a � 1 [38] and can be generalized to channels
of finite height h using a rapidly converging iterative semianalytical formalism [33]. The Poiseuille
flow velocity profile ux(y,z) for a given flow rate Q in a channel of height h and depth d in the
absence of a bubble can be expressed as u∞

p = u∞
p (y,z)ex , where [48]

u∞
p (y,z) = Q

( ∞∑
n odd

2

n4π

{
1 − tanh[nπd/(2h)]

2h/(nπd)

})−1 ∞∑
n odd

1

n3

{
1 − cosh(nπz/h)

cosh[nπd/(2h)]

}
sin

(
nπy

h

)
.

(1)

The presence of the bubble modifies this flow (for example, by introducing velocity components
in y), which now also has to satisfy conditions of zero normal velocity and zero tangential stress at
the bubble surface. This modification may be effected using a similar procedure as that used for the
streaming and is detailed in Ref. [33]. The resulting modified Poiseuille flow in the z = 0 plane is then
specified for some flow rate Q by the 2D incompressible velocity field up(x,y). The superposition
of the streaming and Poiseuille flows in z = 0 results in the 2D flow field u(x) = (u(x,y),v(x,y)),
which can be written as

u(x) = us(x) + up(x). (2)

We stress that this flow field description is not the result of a numerical simulation, but of a finite
summation of analytically known terms. Therefore, we can describe the entire class of combined
streaming-transport flows by a small number of well-defined parameters. More generally, us is a
general vortical flow that is known either analytically or numerically.

We define umax as the maximum speed of the streaming flow (i.e., the maximum over x of |us |),
invariably attained at the bubble surface and related to us by umax = βus , where the O(1) prefactor
β is a known function of the driving frequency [33,49]; e.g., for f ≈ 21.9 kHz, β ≈ 1.8. The mean
Poiseuille flow speed in the z = 0 plane up is

up ≡ 1

h

∫ h

0
u∞

p

∣∣
z=0 dy, (3)

where we have used the fact that far from the bubble, the flow approaches u∞
p . For the channel

geometry considered here (d/h = 0.4), one finds from (1) that up ≈ 1.48Q/(hd). The relative
strength between the Poiseuille and streaming flows is quantified by s ≡ up/umax. The parameter s

is easily controlled in experiment either by modifying the voltage of the ultrasound that drives the
streaming (since umax = 2πε2afβ) or by adjusting the flow rate Q of the Poiseuille flow through
the micromixer [31,33]. The 2D flow u(x) can otherwise be written in terms of a stream function ψ

defined by ψ = ∫
u dy = − ∫

v dx, which will prove useful in subsequent sections. The structure
of the flow discussed thus far is generally applicable to 2D (or nearly 2D) vortex flows excited by
local actuating elements and is not specific to microbubble streaming.
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On an open streamline within the combined streaming and transport flow (2), a fluid element is
forced through a thin gap between the bubble surface and the upstream vortex [31–33] [see Fig. 1(c)].
By continuity, this gap has thickness dgap ≈ sh [31], and we will show that it ultimately plays a role
in diffusive mixing; see Sec. III E.

The mixing under the flow field u(x) is quantified by the spatial structure of a spatio-temporally
evolving scalar field c(x,t) that describes the concentration of a species that is advected in the
flow. Defining a dimensionless position, velocity, and time x̃ = x/h, ũ = u/up, and t̃ = t/(h/up)
(t represents the dimensional time), respectively, and a dimensionless gradient operator ∇̃ = h∇, a
passive scalar field c satisfies

∂c

∂t̃
+ (ũ · ∇̃)c = 1

Pe
∇̃2c, (4)

subject to initial and boundary conditions on c. The Péclet number Pe ≡ uph/Dp is large in our
experiments (�105), a consequence of the use of nanoparticles to suppress diffusive mixing versus
advective stirring (see above). As a first approximation, we therefore neglect diffusive effects entirely
and consider advective mixing (stirring) only, i.e., Pe → ∞.

The advection equation in general does not admit simple analytical solutions and is not
straightforward to solve numerically using grid-based techniques due to the continuous refinement
of advected structures. To accurately solve (4) in the Pe → ∞ limit, we use a Lagrangian particle
method, where we compute the advection of a large number of passive tracers in the flow, by solving
d/dt[xi(t)] = u[xi(t)] for the positions xi(t) of individual tracers i. Each tracer is identified with a
value of the scalar field, which therefore also advects passively with the tracers. The scalar field is
reconstructed at any instant of time by a linear interpolation of the values assigned to the tracers onto
a Cartesian grid. This technique, especially suited to problems with negligible diffusion, has been
widely employed in previous mixing studies to good effect [50–52]. We initialize the simulations
with uniformly spaced tracers at a density of 5122 tracers per h×h region of the spatial domain. The
trajectories of the tracers are then computed numerically using a fourth-order Runge-Kutta scheme.
The numerical results presented in subsequent sections are verified to be convergent with respect to
tracer density and the time step of the integration.

C. Quantification of mixing effectiveness

The quality of mixing at an instant of time is directly related to the spatial distribution of the
instantaneous scalar field c(x,t) that is passively advected by the flow. To quantify the mixing
quality we use the mix-variance of c, which is a multiscale mixing measure appropriate for 2D
advection-dominated flows [53,54]. The mix-variance of a scalar field c(x,t), denoted by �2(c − c),
is defined as

�2(c − c) =
∑

k
|k|	=0

	k|ĉk|2, with 	k = [1 + (2π |k|)2]−1/2. (5)

The ĉk are 2D Fourier components of c(x), defined as

ĉk(t) =
∫

ROI
c(x′,t) e−i2πk·x′

d2x′, (6)

where x′ = (x ′,y ′) is a rescaled position vector, with x ′,y ′ ∈ [0,1] within the region of interest
(ROI). The omission of the k = 0 Fourier mode in (5) ensures that the mean value c of c(x) does not
influence the value of �2. The mix-variance is particularly useful in the limit of Pe → ∞, since it
penalizes the spectral energy contributions contained in shorter wavelengths by the weight factor 	k
(lower values of �2 indicate better mixing). We point out here that �2 has units of length (via 	k),
whose value is representative of a characteristic length scale of variation of the scalar field c. We
additionally rescale �2 by its initial value �2

0 to obtain a normalized mixing measure φ2(t) ≡ �2/�2
0

which varies between 1 (the initial, fully unmixed state) and 0 (fully mixed).
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In our mixing experiments, the gray scale fluorescent intensities of the two liquid streams before
they meet at the junction [cf. Fig. 2(a)] are denoted, respectively, by Cmax and Cmin for the bright
(containing fluorescent nanoparticles) and dark streams. We normalize the intensity field C(x,t) as
c(x,t) ≡ [C(x,t) − Cmin]/(Cmax − Cmin), so that in the unmixed state, the bright and dark streams
are identified with c = 1 and c = 0, respectively. In both experiments and simulations, we typically
select a square ROI located just downstream of the bubble and covering most of the channel height;
cf. Fig. 2(a). To compute the mix-variance, x and y are rescaled by the dimensions of the ROI so
that (5) can be applied directly.

We restrict our attention to the experimentally relevant initial distribution of the scalar field c(x)
characterized by two distinct layers of unmixed fluid separated by a sharp interface of contact,
located initially at y = y0. The initial distribution of the scalar field is therefore

c(x,t = 0) = c0(x) = H(y0 − y), (7)

where H(·) is the Heaviside function. In experiments, where the initially unmixed fluids are introduced
from the two different inlets [Fig. 2(a)], y0 is determined by the ratio of flow rates through the two
inlets. Here we consider equal flow rates, so that y0 = h/2.

III. RESULTS AND DISCUSSION

The superposition of Poiseuille transport flow and vortex flow is prototypical for a practical
open flow mixer, where a constant throughput has to be reconciled with mixing action induced
by a secondary flow (here the vortices). If the secondary flow is weak, no mixing effects
beyond Taylor–Aris dispersion due the transport flow [55,56] are expected, so that we focus here
on situations where the streaming is strong relative to the transport, i.e., s � 1. This ensures
both greater flow speeds near the bubbles and greater coverage of the mixing volume by the
vortices.

However, a mere steady superposition with the vortex flow will simply modify the streamlines
of the transport flow, and any mixing efficiency is severely limited through the Poincaré–Bendixson
theorem, which disallows chaotic advection in 2D steady flows [57]. It is therefore critical that the
flow be modulated in order to utilize the flow effectively.

A. Mixing on open streamlines versus vortex mixing

Before modulation is applied, it is crucial to quantify the mixing action of the steady flow
in both open-flow (transport) and closed-streamline (vortex) regions. In the Pe → ∞ limit, this
requires computing the stretching of striation filaments of the concentration field. The efficacy of
this stretching depends on the characteristic local strain rate of the flow, given by γ̇ = (E : E)1/2,
where E ≡ 1

2 (∇u + ∇uT ) is the rate-of-strain tensor.
We shall first show that the average strain rates a fluid particle experiences within a vortex are

greater than those in the open-streamline transport flow. Note that both vortex trajectories and open
trajectories are periodic in a bubble array as in Fig. 1(a). A quick estimate shows that the accumulated
strain on open streamlines over one period is O(1): this is obviously true in the undisturbed Poiseuille
flow between bubbles, where γ̇ ∼ (ūp/h) and transport times from bubble to bubble (L ∼ h) are
∼h/ūp. Likewise, in the thin gap flow [cf. Fig. 1(c)] directly next to the bubble, the flow speed is
a factor 1/s greater and flow gradients are set by the bubble radius a, so that γ̇ ∼ ūp/(sa), while
the transport through the gap takes a time ∼ (sa)/up. Misorientation of the striation elements will
further limit the efficacy and the total stretch, but the order of magnitude of the average strain rate
is χo ∼ up/h ∼ sus/h.

By contrast, fluid elements within the vortices are more effectively stretched, mostly because the
net shear strain rate across streamlines is much larger. The mean shear rate experienced by a fluid
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FIG. 3. (a) Mean shear rates χv(ψ) versus orbit times Tv(ψ) in upstream and downstream vortices. The
outermost streamline of the downstream vortex has the largest shear rate χv and an orbit time T max

v ≈ 0.89h/up

for s = 0.02. (b) Normalized mix-variance φ2(t) for steady mixing in a microbubble array (see Fig. 2) computed
from a simulation (red). The expression (9) predicts a linear decay for short times t < t∗ (green) and decays
as t−1 to φ2

∞ at long times t > t∗ (black); here t∗ ≈ 1.07 T max
v and φ2

∞ ≈ 0.3 are obtained by a fit of (9) to the
simulation data. We find that t∗ ≈ T max

v over a wide range of initial conditions, indicating that the decay of
φ2 becomes considerably slower for t � T max

v and suggesting an optimum stirring time t∗ ≈ T max
v . The inset

shows the t−1 decay of φ2 − φ2
∞ at long times. The results pertain to f = 21.9 kHz and s = 0.02.

element as it completes an closed streamline orbit (stream function ψ) is

χv(ψ) ≡ 1

Tv(ψ)

∫ t+Tv (ψ)

t

n · 2E · s dt, (8)

where s = u/|u| and n = s × ez are the unit tangent and normal vectors to the motion of the element
on ψ , respectively, and Tv(ψ) ≡ ∮

ψ
s · dx/|u| is the orbit time by definition. Figure 3(a) shows

χv(ψ) for the upstream and downstream vortices in units of ūp/h, for a theoretically computed
flow field with parameters representative of bubble microstreaming experiments. As expected, the
values of χv(ψ) are a factor 1/s � 1 larger than χo (i.e., χv ∼ us/a); similar reasoning holds in
devices utilizing different secondary flow fields than bubble streaming vortices. This clarifies that
any optimization of mixing action must focus on the vortex flow.

B. Optimizing vortex mixing

From its initial value of �2
0, the mix-variance of a bright-dark concentration pattern of striations

in a vortex decreases with exposure time to the vortex flow. Initially (by continuity), this decay is
linear, but for long times (again in the limit Pe → ∞), a universal asymptotic behavior takes over:
In steady 2D shear flow, the fluid element stretch becomes linear in time under general assumptions;
equivalently, the thickness of striations in the bright-dark concentration pattern decays as t−1 [2].
This algebraic t−1 decay is inherited by �2, and demonstrates that 2D steady flows are poor mixers
compared to flow fields that lead to exponential decay of striation thickness or �2, usually considered
the hallmark of successful mixing [2,53]. Depending on the initial distribution of striations and the
details of the steady 2D flow, parts of the scalar field can remain unmixed even at long times (e.g.,
close to stagnation points or no-slip walls) in the absence of diffusion. These unmixed regions cause
the decay of �2 to, in general, approach a nonzero asymptotic value �2

∞, so that �2 ∼ �2
∞ + O(t−1)

for long times, further limiting the efficacy of steady vortices for mixing. The persistence of unmixed
regions and t−1 decay of striation thicknesses outside these regions are general features of advective
mixing in 2D steady flows [4,58].

Matching both the values and the decay rates of the generic short- and long-time asymptotes of
�2(t) [�2(t) ∼ �2

0 − b1t and �2(t) ∼ �2
∞ + b2t

−1, respectively, with b1 and b2 being determined
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by the details of the flow] at an intermediate time t∗, the mix-variance in a steady vortex can be
expressed as a piecewise C1 continuous function

φ2(t) ≡ �2(t)

�2
0

≈
{

1 − (
1 − φ2

∞
)

t
2t∗ , t � t∗

φ2
∞ + (

1 − φ2
∞

)
t∗
2t

, t � t∗,
(9)

where φ2
∞ ≡ �2

∞/�2
0. In this expression, the details of the flow field and the initial conditions are

contained entirely within the parameters t∗ and φ2
∞. Figure 3(b) demonstrates this conclusion for

the striation pattern inside the downstream vortex: aside from periodic modulations due to initial
distribution within the vortex, φ2 shows a crossover well fit by (9). Of particular importance is the
crossover time t∗ in (9), which represents the time beyond which mixing inside the vortex flow
becomes less efficient (per time). It is useful from a practical standpoint to estimate t∗ using the
kinematic properties of the flow field, rather than requiring a full solution of (4).

In our example, as in many open-flow mixers, the flow is very inhomogeneous within each
vortex, with the greatest average strain rate χmax

v applied in the downstream vortex close to the
bubble and therefore on streamlines at the outer edge of this vortex [cf. Fig. 3(a) and (8)]. In order
for every fluid element on this outermost streamline (we denote its stream function by ψmax) to
experience χmax

v = χv(ψmax), the vortex flow needs to act for a duration T max
v = T (ψmax). Note that

T (ψmax) = max[T (ψ)], so that all fluid elements in the downstream vortex complete at least one
orbit during this time. It is thus reasonable to estimate the crossover time as t∗ = T max

v , which is
confirmed by steady simulations, where we find t∗/T max

v = 1.07; cf. Fig. 3(b). Stirring fluid elements
in the vortex beyond t = t∗ becomes less and less efficient, and the mixed fluid in the vortex is of
course never transported downstream. In general, the inefficiency of 2D steady mixing arises from
the gradual orientation of striations along streamlines by the flow [4,58] (which occurs here on the
time scale t∗). For these reasons, it is necessary to modulate the flow on time scales t ∼ t∗ in order
to overcome these limitations.

The theoretical arguments that lead to (9) follow from the general properties of passive advection
in vortices and are not tied to the specific structure of the bubble streaming flow. In particular,
a maximally shearing streamline with an orbit time of T max

v can be found for any set of closed
streamlines. If this maximally shearing orbit is sufficiently large (as is the case here), it dominates
the stirring properties of the entire vortex so that t∗ ≈ T max

v in (9). Note that at the crossover time
t = t∗, we find from (9) that φ2 = 1

2 (1 + φ2
∞). The value of φ2

∞ depends on the initial conditions
presented to the vortical flow, although its precise value is unimportant for our purposes, as we will
show in the following sections.

C. Flow modulation by duty cycling

The slow algebraic t−1 decay of mixing measures in steady vortex flows can be overcome by the
deliberate introduction of unsteadiness. A practical flow modulation strategy at constant throughput
(steady Poiseuille flow) is duty cycling of the streaming, which has the benefit of requiring only
relatively simple control of the vortex strengths, and is readily generalizable to other kinds of cross
flows.

For microbubble streaming, this is effected simply by alternately turning on and off the ultrasound
for time intervals τon and τoff respectively. Transients during the on-off process can be neglected
by ensuring that the frequency of the modulation is much smaller than that of the ultrasound
(τon,τoff � 1/f ). For our mixing simulations, we use the time periodic flow field (with period
τcycle ≡ τon + τoff) defined by

u =
{

up + us , 0 < t < τon,

up, τon < t < τcycle,
(10)
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(a) (b)

(c) (d)

FIG. 4. Snapshots of the scalar field mixing due to a duty cycle with τon = τoff = 0.4h/up , at different
instants of time: (a) at the end of “on” part of the first cycle, t = τon, (b) at the end of the first cycle, t = τcycle,
(c) at the end of the “on” part of the second cycle, t = τcycle + τon, and (d) after eight cycles, t = 8τcycle.
Streamlines of the superposition up + us are indicated in (a) and (b), with the outermost streamline of the
downstream vortex indicated in orange. Partially stirred fluid during the “on” part of the cycle due to the flow
up + us [cf. panel (a] is advected during the “off” part of the cycle by the transport flow up . By the end of a
full cycle (b), the scalar field has been favorably redistributed for stirring during the next “on” phase, whose
streamlines are here indicated as dashed lines. Iterative application of the duty cycle results in efficient mixing.

where t is defined modulo τcycle. The simulation also uses periodic boundary conditions at x = ±h,
corresponding to a bubble array with the experimental spacing L = 2h.

During the “on” phase of the cycle, mixing proceeds as indicated above, primarily in the closed
upstream and downstream vortices of the flow. During the “off” phase, these mixed regions of fluid
are transported downstream by the Poiseuille flow, presenting a rearranged advection field to the
next “on” phase of the cycle. This rearrangement of the advection field allows the vortices during
the “on” phase of the next cycle to stretch and fold new material, further refining the advection field.

In a periodic bubble array, a given volume of fluid is deformed repeatedly during several cycles.
Figure 4 shows a simulation of the successive refinement of fluid passing periodically by a bubble
streaming element under duty cycling. In Fig. 5 we plot the �2 values associated with this process
[computed from the numerical solution for c(x,t)] and show that �2 now decays exponentially
with time in the mean. This dramatic improvement demonstrates that the modulation allows fluid
elements to experience comparable factors of decrease in φ2 during every cycle, thus achieving the
signature exponential decay associated with efficient stretching and folding [2,54,59].

More formally, the relative mix-variance is found to oscillate (with period τcycle) about a mean
exponential trend of the form

φ2(t) ≡ �2(t)

�2
0

= α e−σ t/τcycle, for t � τcycle. (11)

Here α(τon,τoff) and σ (τon,τoff) are respectively an O(1) prefactor and an exponential rate constant
that depend on the duty cycle and are obtained by a least-squares fit to the result of the simulation.
The value of α(τon,τoff) is relatively insensitive to the duty cycle chosen and is close to unity.
However, due to the exponential decay of φ2, it is worthwhile identifying optimum combinations of
τon and τoff (duty cycling protocols) that maximize σ .
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FIG. 5. Decay of the normalized mix-variance φ2 = �2/�2
0 under duty cycling for an array of bubbles

showing results of simulations (lines) and an experiment (markers). Simulations correspond to duty cycles
with a constant τoff = 0.4h/up and varying τon and use periodic boundary conditions. Experimental markers
correspond to a 50% duty cycle with τon = τoff = 0.36h/up in a bubble array similar to Fig. 2(a). The distance
X along the array in experiments is used as a proxy for time t in simulations using the mean transport speed
up , i.e., t = X/up . Duty cycling in general results in an exponential decay of �2 in time, with a decay rate
that depends on τon and τoff . The dashed red line is an exponential fit to the solid red curve of the simulation
(τoff = 0.4h/up, τon = 0.5h/up).

D. Optimum duty cycling protocols

We consider here two separate but related kinds of optimum duty cycles. The first involves
identifying the duty cycle that maximizes the mixing incurred per cycle, equivalent to maximizing
σ . This effectively minimizes the number of cycles required to achieve a target mixing quality,
irrespective of the absolute cycle time required. The second kind of optimization attempts to achieve
the fastest decay of �2 per unit time, maximizing the quantity σ/τcycle without restricting the number
of cycles required to achieve a targeted mixing quality. We show below that these two criteria in
general result in different optimal protocols.

It is useful to interpret the action of the flow on a fluid element as a 2D mapping; each mapping
results in some decay of the mix-variance �2, which occurs predominantly through mixing in the
downstream vortex. The duty cycling allows the mapping to be repeatedly applied to the material
volume, as it is transported past the bubble array. We have estimated in Sec. III B that the crossover
time to less efficient, algebraic mix-variance decay occurs for t∗ ≈ T max

v ; accordingly, we now
postulate that the optimum “on” time should be given by

τ ∗
on ≈ T max

v . (12)

A shorter τon < τ ∗
on does not fully exploit the maximum shear χmax

v in the flow, while a longer
τon > τ ∗

on results in less efficient algebraic stirring.
How should the “off” part of the cycle time be optimized? Its role is to ensure transport of fluid

elements to the next downstream vortex such that it can mix with maximum efficiency. In particular,
that means striation orientation should be transverse to the principal shear directions of that vortex.
This condition of transversality (“streamline crossing”) has been investigated in detail in the context
of linked-twist maps (LTMs) [17,60] with the most prominent example being the blinking vortex flow
[15,61,62]. In such examples, one of two alternating flows stretches and simultaneously reorients
striation elements such that the other flow can stretch them most efficiently. In direct analogy to LTM
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FIG. 6. Contours of the decay exponents of �2, (a) σ , and (b) λ, as a functions of τon and τoff . Maximum
values of σ and λ correspond respectively to duty cycling protocols that achieve optimum mixing per cycle
and per unit time. The results shown here are for h/a = 6.25, f = 21.9 kHz, and s = 0.02 in a bubble array
with a spacing of L = 2h between bubbles. The simulations are run for a time ≈ 14Tp for each duty cycle. The
horizontal and vertical gray lines in (a) and (b) give the analytical estimates from (12) and (13) (i.e., τon = τ ∗

on ≈
T max

v and τoff = τ ∗
off ≈ Tp for σmax ≈ 0.69), and the result of maximizing (16) (i.e., τon ≈ 0.6T max

v ≈ 1.3Tp and
τoff ≈ τ ∗

off ≈ Tp for λmax ≈ 0.25). (c) Comparison of decay rates λ in experiments (red squares) and simulations
(blue circles) for 50% duty cycling (τon = τoff ), showing a peak near τon ≈ τoff ≈ Tp .

flows, we interpret the upstream vortex as the reorienting flow for the downstream vortex mixing.
This means that the optimum configuration should transport fluid from the location of the upstream
vortex to that of the downstream vortex during τoff ,

τ ∗
off ≈ Tp ≡ dvv

up

, (13)

where Tp is the time required by the mean Poiseuille flow to transport fluid between the location of
vortex centers a distance dvv apart. A much smaller τoff < Tp results in relatively small changes of
the scalar field distribution between driving cycles. A larger τoff > Tp, however, causes fluid to flow
past one (or both) of the vortices without being mixed. The geometry of microbubble streaming flow
vortex centers is found to be insensitive to a wide range of driving frequency changes [36,38], with
experiment and theory yielding a largely invariable vortex-to-vortex distance of dvv ≈ 2.5a.

It is convenient to normalize all relevant times by the transport time Tp; we define a dimensionless
ratio

ϕ ≡ T max
v

Tp

, (14)

which is a property of the flow field (i.e., depends on s and f ). Note that the ratio ϕ involves the
orbit time on the maximally shearing closed streamline, the separation between vortices, and the
mean speed of the Poiseuille flow. In the following, we will study in detail the mixing efficiency for
a typical, practically relevant combination of s = 0.02 and f = 21.9 kHz; the resulting parameter
value is ϕ ≈ 2.2; cf. Fig. 3(a).

The duty cycle τon ≈ T (ψmax) and τoff ≈ Tp is expected to result in the optimal use of vortices
as well as the transport of fluid between them. This identifies the duty cycle that achieves the fastest
mixing per cycle, i.e., it maximizes σ in (11). To estimate the maximum σ , we recall that the
equation for vortical stirring (9) predicts a reduction of φ2 by a factor of 1

2 (1 + φ2
∞) over the optimal

stirring time T max
v . If we assume that no further mixing takes place during the “off” part of the

cycle, and that the duty cycling disrupts any unmixed regions so that φ2
∞ becomes negligible after a

few cycles, this factor translates to an ideal decay exponent σmax � log 2 = 0.69. This prediction is
in close agreement with the maximum value computed from simulations σ ≈ 0.65, achieved when
τon ≈ 2.14Tp = 0.97T max

v and τoff ≈ 1.15Tp; cf. Fig. 6(a). It is worth noting that the theoretical
optimum decay is the same as that obtained from a volume-preserving Baker’s transform [17]. The
figure also shows that the estimates (12) and (13) for the optimum cycle times are very close to the
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numerically determined optimum. We remark that σmax obtained from simulations is slightly smaller
than the theoretical prediction, consistent with an initially nonzero φ2

∞.
The second optimum cycle of interest is the one that results in the fastest absolute decay of φ2

per unit of time. We now recast (11) as

φ2
duty(t) = αe−λt/Tp , where λ = σTp

τcycle
. (15)

Here λ is a dimensionless decay rate per unit of time. In general, we expect the duty cycle that
maximizes λ to differ from the one that maximizes σ due to a trade-off between the shorter cycle
times (τcycle < Tp + T max

v ) and lower mixing efficiencies per cycle (σ < σmax), resulting in a mixing
protocol that is ultimately faster in absolute time. We keep τoff fixed at Tp, which is still the shortest
“off” time that allows fluid to be transported between vortices, but now consider τon = η T max

v , where
η < 1 represents the fraction of T max

v for which the “on” part of the cycle is active. For any general
τoff = Tp and τon = ηT max

v , we can write σ = σ (η), which has a maximum σmax = σ (η = 1), i.e.,
when τon = T max

v and τoff = Tp as discussed previously. By definition of a local maximum, σ (η) must
depend quadratically on (η − 1) at leading order, i.e., σ (η) − σmax ∝ (η − 1)2. Assuming that no
mixing (other than the negligible open-streamline mixing) occurs when τon = 0 [i.e., σ (η = 0) ≈ 0]
we can write σ (η) � η(2 − η)σmax for τoff = Tp.

Using τcycle = Tp + η T max
v and the definitions of λ and ϕ yields

λ(η) � η(2 − η)

1 + ηϕ
σmax for τoff = Tp, (16)

which is maximized when η = (
√

1 + 2ϕ − 1)/ϕ. For the value ϕ = 2.2 relevant to our flow, this
optimal η corresponds to τon ≈ 1.3Tp (i.e., η ≈ 0.6) and a maximum decay rate λmax ≈ 0.25. In
simulations, we find that λmax = 0.27, realized when τoff ≈ 1.03Tp and τon = 1.14Tp, once again in
good agreement with the theoretical estimates, as indicated in Fig. 6(b). With simple approximations,
we can thus predict both the optimum cycles and the decay exponents σ and λ obtained at these
cycles.

We performed mixing experiments with 50% duty cycling (τon = τoff) using a periodic array of
bubbles. Values of φ2 were calculated in periodic square ROIs located downstream of each bubble in
the array. At each ROI location X (X measures distance along the array), φ2 reaches a steady-state
value (due to the continuous input of unmixed fluid), which is found to decay exponentially as
φ2 ∝ exp{−κX/(2h)} where κ is the measured dimensionless spatial decay rate. To obtain an
equivalent temporal decay rate that can be compared with the results of the simulations (periodic
boundary conditions), we write X ≈ upt , thereby inferring an experimental temporal decay rate of
λ = κup/(2h). The experimentally inferred λ compares well with the results of the simulation (also
sampled for τon = τoff) and has a maximum value of ≈ 0.29, realized when τon = τoff ≈ 0.9Tp. The
decay rates in the experiments are somewhat greater than in the simulations, which can be attributed
in part to diffusive mixing in experiments. In addition, we have assumed in the simulations that the
steady streaming flow is 2D in nature, while it has been shown that microbubble streaming flows
of this type do exhibit 3D flow effects (velocity components in the direction of the bubble axes)
[40,63], which very likely enhance mixing.

Thus, we have shown that the theoretical predictions for the optimal duty cycle as well as the
maximum decay rate σ max and λmax are in quantitative agreement with the results of both numerical
simulations and experiments. The theoretical predictions follow from simple geometric and physical
arguments and involve three distinct physical quantities: (1) the flow rate Q (the key measure of
the transport flow throughput in a device), which manifests through up, (2) the spacing between
vortices dvv (the key measure of the device geometry), and (3) the orbit time T max

v of the maximally
shearing vortex streamline (the key measure of the vortex flow). These quantities are straightforward
to calculate from the superposition flow u(x), requiring only the evaluation of simple integrals
along closed steady orbits; cf. (8). Furthermore, these quantities have unambiguous meaning for any
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open flow mixer with vortices and are not specific to bubble-based mixers. As a result, the theory
circumvents the need to probe the entire 2D (τon, τoff) space with unsteady mixing simulations or
experiments in search of optimal duty cycling protocols in any given mixing device.

E. Diffusive effects

Even for large Péclet number, diffusive mixing ultimately becomes important as the advection
field is further and further refined through the duty cycling. If the characteristic striation thickness
in the bulk of the channel is �s(t), the time required to homogenize the mixture is of the order
τD ∼ �2

s /Dp. Further refinement of the advection field is only necessary if the effect of diffusion
over the cycle time τcycle is negligible. Diffusion in the channel becomes important when τD ∼ τcycle,
or equivalently

�s(t) ∼ √
Dpτcycle ≡ �1. (17)

However, these striations are further thinned when the flow is squeezed though the narrow gap
(which has thickness dgap ≈ sh) between the bubble and the upstream vortex as fluid elements are
transported past the bubble [31,32]; cf. Fig. 1(c). By continuity, advective structures of size �s in the
bulk channel are reduced to size s�s as they pass through the gap. The time required for diffusion to
homogenize the fluid in the gap is therefore τD,gap ∼ s2�2

s /Dp. On the other hand, the residence time
of a fluid element within the gap is short, τgap ∼ a/umax. For complete (diffusive) mixing within the
gap, it is necessary that τD,gap ∼ τgap, or

�s(t) ∼ 1

s

√
Dpa

umax
=

√
a

sτcycleup

�1 ≡ �2. (18)

Bearing in mind that striation thicknesses decay in time, the relevant condition on the striation
thickness �(t) for complete diffusive mixing is set by the larger of �1 and �2. For mixers with
strong streaming vortices (s � 1), the optimal τcycle is not much greater than Tp = dvv/up (here, the
optimal τcycle ≈ 3Tp; see Fig. 5), so that �2 > �1 [see Eq. (18)], suggesting that diffusive mixing in
the gap occurs for larger �s , or equivalently for earlier times, compared with diffusion in the bulk of
the channel. As established before, �2 ∝ �s , so that the decay of a characteristic striation thickness
follows that of the mix-variance, �s ∼ �0exp{−σ t/τcycle}. Assuming that the initial striation thickness
is comparable to the channel height, the required residence time tres in the mixer is

tres

τcycle
∼ 1

σ
log

(
sh

√
umax

aDp

)
= 1

2σ
log

(
sh

a
Pe

)
. (19)

For typical experimental conditions with s ∼ 0.02 and h/a = 6.25, this corresponds to � 6 optimum
duty cycles at Pe ∼ 105 for complete diffusive mixing to occur.

We remark here that we have accounted for diffusion only in the simplest way possible: by
assuming that it occurs independently from the advection. In practice, diffusive processes are
enhanced due to the presence of flow gradients (Taylor–Aris dispersion) [11,55,56,64]. Additionally,
the current approach takes into account the steady streaming flow only, resulting from a time average
of oscillatory flow; flow oscillations on the faster time scale of the bubble oscillation further contribute
to diffusive mixing [65]. It is then to be expected that the typical residence time required in practice
is smaller than the tres estimated here.

IV. CONCLUSIONS

In the present work, we have investigated 2D advective mixing strategies under continuous
throughput of the species to be mixed, using locally actuated vortex structures. In this application-
relevant scenario, the mixing effectiveness of steady flow actuation is severely limited; the presence
of recirculation regions in the flow (1) inhibits the transport of fluid, and (2) produces only slow,
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algebraic mixing at long times. Both of these limitations are overcome by the deliberate introduction
of flow unsteadiness, e.g., by duty cycling the vortex activity. For the example of ultrasound-driven
microbubble arrays, this is easily realized by a modulation of the driving voltage, and we have
quantified the resulting mixing in experiments and simulations, finding agreement with the following
general results of our theoretical analysis.

Under duty-cycle flow modulation, the quality of mixing—quantified by the mix-variance of the
advection pattern—decays exponentially with time (or equivalently the number of cycles), with the
decay exponent being dependent on the duty cycle chosen. The optimum duty cycle is shown to
be one that (1) optimally uses the vortical regions of the flow for stirring during the “on” part of
the cycle and (2) optimally transports the stirred fluid between vortices during the “off” part of the
cycle. The optimization parameters of the flow modulation are understood from general transport
properties in regions of closed and open flow lines, making direct use of concepts previously
developed in idealized closed-volume mixing. Knowledge of the flow rate, the vortex spacing, and
a characteristic vortex turnover time is sufficient to predict optimum duty-cycle parameters. This
constitutes the first systematic study of flow modulation protocols for optimal micromixing under
continuous transport of fluid through a microchannel, a practical constraint in most micromixing
applications. The approach is not confined to bubble microstreaming, but is applicable to any flow
that combines transport with local vortex actuation.

The results pertain to advective mixing (stirring); the mixture is ultimately homogenized by
diffusion, which sets the required residence time in the mixer for a given particle size. For typical
experimental parameters of bubble microstreaming, the decisive diffusive processes are expected
to occur in the narrow gap between the bubble and the upstream vortex. We emphasize that the
time scales estimated in the present work are a “worst-case” scenario, with practical mixing times
likely to be shorter: We have separated the advective and diffusive processes here, while in practice,
the diffusion of the scalar field occurs simultaneously with advection, and is generally enhanced
by the gradients of the flow (Taylor–Aris dispersion) on both steady and oscillatory time scales.
Additionally, 3D flow effects that have been neglected here but can be excited in microbububble
streaming setups are likely to improve mixing. Despite these simplifying assumptions, the present
work provides useful estimates for the systematic understanding and practical design of open flow
micromixing devices.
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