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Ice bridges are static structures composed of tightly packed sea ice that can form during the course of its
flow through a narrow strait. Despite their important role in local ecology and climate, the formation and
breakup of ice bridges is not well understood and has proved difficult to predict. Using long-wave
approximations and a continuum description of sea ice dynamics, we develop a one-dimensional theory for
the wind-driven formation of ice bridges in narrow straits, which is verified against direct numerical
simulations. We show that for a given wind stress and minimum and maximum channel widths, a steady-
state ice bridge can only form beyond a critical value of the thickness and the compactness of the ice field.
The theory also makes quantitative predictions for ice fluxes, which are particularly useful to estimate the
ice export associated with the breakup of ice bridges. We note that similar ideas are applicable to dense
granular flows in confined geometries.
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An ice bridge is a stationary rigid structure composed of
sea ice, which spans the width of a strait between two land
masses, usually separated by a static arch from a large
region of open water (a polynya). Such ice bridges are
formed seasonally in many of the straits and channels in the
Canadian Arctic Archipelago (usually in the narrowest part
of the strait), persisting for several months and impacting
local climate and ecology [1,2]. Once formed, an ice bridge
controls the edge of the main ice pack (e.g., in Nares Strait),
thus inhibiting the flow and subsequent loss of Arctic sea
ice into warmer oceans and potentially influencing global
climate [3]. Further, the polynya itself plays a key role in
regulating the uptake of solar energy and the transport of
gases and nutrients that are crucial for the sustenance of
marine food chains [4,5]. Despite their seasonal occurrence
and biogeophysical importance, the conditions under which
ice bridges form are not well understood.
Here, we develop a theoretical framework to describe the

wind-driven flow of sea ice through a narrow channel,
focusing on ice bridge formation. The methods used here to
describe ice bridge formation, because of the rheological
description of the ice flow, are more broadly applicable to
flows of granular media and other complex materials. We
consider the motion of sea ice in a symmetric channel of
arbitrary shape, y ¼ wðxÞ, with a characteristic half-width
w0 and length l0 ≫ w0, as indicated in Fig. 1; typical
values are w0 ≈ 30 km and l0 ≈ 200 km. The flow of the
ice is driven by an external wind stress f (typically∼0.1 Pa)
acting on its top surface, cf. Fig. 1(a), and is impeded by
water drag on its bottom surface as well as internal stresses
that arise due to a resistance to motion relative to the
channel walls [6].
Adopting the widely used approach in climate modeling,

we treat the ice field as a 2D continuum rather than
considering the dynamics of individual floes. The inertia

of the ice is negligible on time scales longer than a few
hours, and water drag, being quadratic in the relative ice-
ocean velocity, is small relative to other stress terms for
slowly moving ice and weak ocean currents [6,7]. The
Coriolis force is an order of magnitude smaller than wind
stress for a typical ice velocity (∼0.1 ms−1) and thickness
(∼1 m) and is smaller still for stationary (bridged) ice.
Thus, at first approximation, the depth-integrated stress
equation reduces to the two-dimensional balance [6,8,9]

∇ · σ þ f ¼ 0; ð1Þ

where σðx; y; tÞ is the depth-integrated internal stress tensor
(units of force per length) associated with the velocity field
uðx; y; tÞ ¼ uex þ vey. The surface wind stress f has units
of force per area and is assumed to be a constant and
unidirectional for simplicity, i.e., f ¼ fex. Water stress,
which is necessary to establish free drift of the ice, can be

(a) (b)

FIG. 1. Schematic of the setup and forcing conditions,
indicating the coordinate system and the external wind stress.
Panel (a) shows a section normal to the plane of flow, and
(b) sketches a plan view of the narrow channel geometry with
l0 ≫ w0, indicating the possible formation of a static ice arch.
The ice field is described using an effective thickness h and a
compactness c.
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included in the theory that we develop here, but does not
significantly affect ice-bridge formation.
We use Hibler’s viscous-plastic constitutive law for sea

ice [10,11], in which σ is related to the rate-of-strain tensor
E ¼ 1

2
ð∇uþ∇uTÞ by

σ ¼ −pIþ ηðα2 − 1ÞðtrEÞIþ 2ηE; ð2Þ

where α is an Oð1Þ parameter that represents the eccen-
tricity of an elliptic yield curve, and p is the depth-
integrated average normal stress (also referred to as a
pressure). The depth-integrated viscosity η depends on both
p and E and is given by the relation

η ¼ 1

α2
max

�
p
E
; ζmin

�
; ð3Þ

where E≡ α−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2trðE ·EÞ þ ðα2 − 1ÞðtrEÞ2

p
is a measure

of the strain rate. Thus, the rheology is nominally plastic
(i.e., σ is invariant to a rescaling of E for η ¼ α−2p=EÞ,
with a viscous regularization for large strain rates
(η ¼ α−2ζmin for E > p=ζmin) [12]. The dependence of η
on p and E shares several similarities with continuum
models of dense granular flows [13–15]; hence, the results
we derive below should be widely applicable.
The sea ice thickness distribution [16,17] is approxi-

mated by a two-level model: the effective thickness h is
defined as the ice mass per unit area divided by its density
(assumed constant) and the compactness c, as the area
fraction of rheologically active “thick” ice relative to the
total area covered by ice (including open water) [11].
Neglecting thermodynamic sources of thickness redistrib-
ution (e.g., precipitation and phase changes), the conser-
vation equations for h and c are [11]

∂h
∂t þ∇ · ðuhÞ ¼ 0 and ð4aÞ

∂c
∂t þ∇ · ðucÞ ¼ 0; with 0 ≤ c ≤ 1: ð4bÞ

Since the pressure p is a depth-integrated stress, it is
linearly related to h to good approximation [6,18,19]. On
the other hand, p decreases strongly for c not close to unity
(due to decreased interactions between floes), motivating a
relationship of the form

p ¼ She−kð1−cÞ; ð5Þ

where S is a strength constant (with units of force
per area), and k is a dimensionless model parameter
[11]. Equations (1)–(5) define Hibler’s sea ice model
[11], and form a coupled system for the unknowns u, h,
c, η, and p (functions of x, y and t) in terms of parameters α,

ζmin, S, and k. The system can be solved subject to initial
conditions on h and c, and the no-slip condition at the
channel walls ujy¼�wðxÞ ¼ 0.
The standard approach in climate modeling with sea ice

is to treat this nonlinear problem numerically [6,8,20].
Here, we obtain analytical results that are applicable when a
strait is narrow, i.e., δ≡ w0=l0 ≪ 1, by first developing an
approximate expression for the ice velocity as a function of
p and the channel shape wðxÞ. We then use this result in the
continuity equations (4a) and (4b) to obtain reduced-order
evolution equations for h and c that admit solutions
consistent with ice bridge formation.
Guided by long-wave approximations for plastic flows in

channels [21,22], we define dimensionless variables as

x ¼ l0 ~x; y ¼ w0 ~y; u ¼ u0 ~u; v ¼ δu0 ~v;

t ¼ l0

u0
~t; p ¼ p0 ~p; η ¼ ζmin

α2
~η; h ¼ p0

S
~h;

ð6Þ

where u0 and p0 are, respectively, characteristic velocity
and pressure scales that are to be determined. We note
that (5) rescales to become ~p ¼ ~he−kð1−cÞ. Striking a
balance between wind stress and transverse shear
stress gradients in (1)–(2) yields the velocity scale
u0 ¼ α2w2

0f=ζmin. Further, the no-slip condition at the
walls demands that the flow behaves viscously
(η ¼ ζmin=α2) near the channel walls, which is realized
only when p ≤ Eζmin, cf. (3). This latter condition estab-
lishes a pressure scale p0 ¼ ζminu0=ðαw0Þ ¼ αw0f.
Defining ~E≡ Eαw0=u0, we can then write

~η ¼ max

�
~p
~E
; 1

�
; ð7aÞ

with ~E ¼
���� ∂ ~u∂ ~y

����þOðδÞ: ð7bÞ

The stress balance (1)–(3), for δ ≪ 1, reduces to

∂ ~p
∂ ~y ¼ 0; ð8aÞ

∂
∂ ~y

�
~η

�∂ ~u
∂ ~y

��
þ 1 ¼ 0; ð8bÞ

In contrast with viscous fluid flow in narrow channels,
normal and shear stresses in the ice are comparable due to
the dependence of ~η on ~p and E, cf. (2) and (3).
Consequently, the longitudinal pressure gradient is an
Oðw0=l0Þ smaller than the transverse gradient of shear
stress and is therefore absent from (8b) at first
approximation.
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Integrating (8) with respect to ~y and applying the
condition of zero shear stress at the symmetry axis
~y ¼ 0 results in ~ηð∂ ~u=∂ ~yÞ ¼ −~y and ~p ¼ ~pð~x; ~tÞ. We
recognize that the flow must be viscous (~η ¼ 1) in a layer
near the channel walls in order to satisfy the no-slip
condition. Within this layer, the expression for shear stress
can be integrated subject to the no-slip condition to obtain
the velocity ~uv in the viscous layer as

~uvð~x; ~y; ~tÞ ¼
1

2
ð ~w2 − ~y2Þ: ð9Þ

Observing that ~η ¼ 1 is only realized if ~E > ~p, and that
~E ∼ j∂ ~u=∂ ~yj ∼ j~yj by (7) and (9), we deduce that the
viscous layer spans the region ~pð~x; ~tÞ < j~yj < ~wð~xÞ, as
sketched in Fig. 2(a).
In the central part of the channel, where j~yj < ~pð~x; tÞ, the

flow is plastic (~η ¼ ~p= ~E) as per (7a). Here, the horizontal
velocity is nearly independent of ~y and can be written as
~u ∼ ~upð~x; ~tÞ, see Fig. 2(a). Continuity of velocity across the
boundary j~yj ¼ ~pð~x; ~tÞ between the viscous and plastic
regions of the flow yields

~upð~x; ~tÞ ¼
1

2
ð ~w2 − ~p2Þ: ð10Þ

A singular perturbation analysis shows that ~η ¼ Oðδ−1Þ
and ∂ ~u=∂ ~y ¼ OðδÞ in the plastic region [21]; we do not,
however, discuss these details here.
Thus, the curves ~y ¼ � ~pð~x; ~tÞ represent pseudoyield

surfaces across which the rheology transitions from plastic
to viscous flow. However, if ~p > ~w (at some ~x and ~t), the
pseudoyield surface lies “outside” the channel, preventing
this transition from occurring and thereby causing the flow
to be locally unyielded with ~u ¼ 0, see Fig. 2(a). The
different flow behaviors can be combined into a compact
expression for ~u:

~uð~x; ~y; ~tÞ ¼ max

�
1

2
ð ~w2 −max f ~p; ~yg2Þ; 0

	
; ð11Þ

which is indicated by arrows in Fig. 2(a). The width-
averaged mean flow speed h ~uið~x; ~tÞ is then

h ~ui≡ 1

2 ~w

Z
~w

− ~w
~ud~y ¼ max

�
~w2

3

�
1 −

~p3

~w3

�
; 0

	
ð12Þ

and is plotted in Fig. 2(b). Thus, a critical condition for flow
~p < ~w emerges from the long-wave theory.
We now turn to the continuity equations (4). If ~h and c

are nearly uniform across the channel (contingent on initial
conditions), (4) can be integrated across the channel width
to eliminate ~v and obtain averaged 1D equations:

∂ð ~w ~hÞ
∂~t þ ∂ð ~wh ~ui ~hÞ

∂ ~x ¼ 0 and ð13aÞ

∂ð ~wcÞ
∂~t þ ∂ð ~wh ~uicÞ

∂ ~x ¼ 0; 0 ≤ c ≤ 1: ð13bÞ

Equations (12)–(13) form a reduced-order (1D) system of
hyperbolic conservation laws for ~hð~x; ~tÞ and cð~x; ~tÞ,
coupled through the mean flow speed h ~ui; we recall that
~p ¼ ~he−kð1−cÞ. We solve this coupled system numerically
using the HLL (Harten–Lax–van Leer) method [23] in
which wave information is advanced along local character-
istics (see also [24]). As representative examples, we focus
here on a uniform initial ice field with ~hj~t¼0 ¼ ~hi and
cj~t¼0 ¼ ci in a channel of nonuniform shape ~wð~xÞ. Because
of (5), the initial pressure field is also uniform, i.e.,
~pj~t¼0 ¼ ~pi ¼ ~hie−kð1−ciÞ. We hold ~h ¼ ~hi and c ¼ ci at
both the inlet ð~x ¼ 0Þ and the outlet ð~x ¼ 1Þ; note that the
inlet condition amounts to constant fluxes of ~h and c into
the channel.
Figure 3 shows the numerically computed time evolution

of the thickness distribution along the channel for two
different ~hi, with ci ¼ 1. The results in Fig. 3(a) correspond
to a flow with ~pi < ~w everywhere. In this case, the system
evolves towards a steady state characterized by a smooth
distribution of ice properties along the channel without
bridge formation (h ~ui > 0 everywhere).
By contrast, Fig. 3(b) corresponds to a situation in which

~pi > ~w in a part of the channel (region between dashed
lines) constituting a local blockage with h ~ui ¼ 0, cf. (12).
The ice downstream of the blockage flows in response to
the wind stress, leaving ever thinning ice in its place, while
the incoming ice upstream of the initial blockage piles up
until it becomes thick enough to stop flowing. This results
in the development of a discontinuity in ice properties that
separates thick, compact, and stationary ice from flowing
open water ( ~h ¼ c ¼ 0), as indicated in Fig. 3(b) and
sketched schematically in Fig. 3(c). These results are

x

y

ỹ = w̃(x̃)ỹ = p̃(x̃, t̃)

unyielded (〈ũ〉 = 0)

p̃ > w̃

(a)

0 0.5 1 1.5
0

0.1
0.2
0.3
0.4

p̃/w̃

〈ũ
〉/

w̃
2

(b)

FIG. 2. (a) Velocity profile for a channel of shape ~wð~xÞ with
some pressure distribution ~pð~x; ~tÞ. The curves j~yj ¼ ~pð~x; ~tÞ
represent pseudoyield surfaces between viscous and plastic flow
regions. The ice is unyielded and is locally stationary in parts of
the channel where ~p > ~w (shaded). (b) Mean velocity h ~ui as a
function of ~p= ~w, as per (12), showing that h ~ui ¼ 0 for ~p= ~w > 1.
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consistent with previously observed and simulated mech-
anisms of ice arch formation in which a polynya is formed
downstream of the arch [3,25,26]. A third type of steady
state occurs trivially when ~pi > ~w everywhere in the
channel, for which h ~ui ¼ 0 throughout and no arch is
formed. The different types of flow behavior are closely
related to wave propagation in the hyperbolic system (13)
and have analogies with traffic flow; these properties will
be discussed elsewhere.
Thus, for a channel with maximum and minimum half-

widths wmax and wmin, respectively, the condition for arch
formation with uniform initial ice properties is wmin=w0 <
~pi < wmax=w0 or

αwminf
S

< hie−kð1−ciÞ <
αwmaxf

S
; ð14Þ

where hi ¼ αw0f ~hi=S is the dimensional initial ice
thickness. The steady-state flow is arrested everywhere if
hie−kð1−ciÞ > αfwmax=S, and is fully mobile if hie−kð1−ciÞ <
αfwmin=S. We remark that the above predictions for the
structure of the steady-state flow are independent of ζmin.
We validate the predictions of our theory against direct

numerical simulations of the full 2D system (1)–(5) using
standard methods in sea ice modeling [20,25]. Figure 4
quantifies the structure of the steady-state flow and shows
theoretical predictions (shaded areas) alongside 2D numeri-
cal simulations (symbols), indicating that either flowing,
bridged, or fully arrested steady states are attained depend-
ing on the initial ice properties.
We remark that our reduced-order theory does not

guarantee stability of the arch, and therefore, slightly

underpredicts the minimum initial thickness required for
bridge formation, cf. Fig. 4. In particular, as the ice pack
opens up downstream of the initial blockage, the length
scales in both the x and y directions become comparable,
and the dynamics in the vicinity of the arch are fully two
dimensional, see Figs. 3(b) and 3(c). Nonetheless, the
present theory captures several features of the simulations
and predicts realistic values of ice thickness (a few meters)
for arch formation in straits with widths ∼50 km and
typical wind stresses [25,26], cf. Fig. 4.
The area flux of ice can be inferred from (12) as

q ¼ max
�
2α2w3f
3ζmin

�
1 −

�
p

αwf

�
3
�
; 0
	
; ð15Þ

which assumes the dominance of internal stresses
over water drag on the ice, and is therefore expected
to be accurate for strong ice, i.e., p=ðαwfÞ ¼ Oð1Þ.
For relatively weak ice [p=ðαwfÞ ≪ 1], water drag pro-
vides the main resistance to flow, balancing atmospheric
stress and establishing the free-drift velocity scale
ufd ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f=ðρwCdwÞ

p
; here ρw and Cdw are, respectively,

the density of water and the water-ice drag coefficient.
The two velocity scales become comparable when

p ¼ αwff1 − 3ζmin=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4α4w4fCdwρw

p
g1=3, setting a lower

bound on p for the applicability of our theory. On the other
hand, the weak-ice limit (p ≪ αwf) of (15) provides
reasonable agreement with measured ice velocities in
Nares Strait as a function of the wind stress [27]
(juj≲ 0.3 ms−1 for f ≲ 0.6 Pa) when using the standard
values of ζmin ¼ 4 × 108 Pam s and α ≈ 1 [25], see
also [3,28]. A more direct quantitative comparison with

(a) (b) (c)

FIG. 3. Time evolution of the reduced-order system (13), computed numerically, in a channel of shape ~wð~xÞ ¼ 1þ 0.3 cos 2π ~x, with
uniform initial conditions ~hj~t¼0 ¼ ~hi (green line) and cj~t¼0 ¼ ci ¼ 1. Colors in (a),(b) indicate thinner (red) or thicker (gray) ice, and
gray lines are distributions of ~h along the channel at different ~t. Panel (a) corresponds to ~hi ¼ 0.6 ( ~pi < ~w everywhere), in which the ice
field evolves to a flowing state with no bridge formation. Panel (b) corresponds to ~hi ¼ 0.8, for which ~pi > ~w between the dashed lines,
constituting an initial blockage. Ice upstream of the blockage thickens, while ice downstream of the blockage thins, resulting in a 1D
realization of an ice arch that separates immobile ice from open water. This process is sketched in (c), which depicts the pseudoyield
surfaces ~y ¼ � ~pð~x; ~tÞ (red curves), stationary thick ice (shaded), and flowing regions (arrows) at different times. The compactness
evolves similarly to the thickness in both (a) and (b).
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observations is challenging at present due to the lack of
simultaneous measurements of ice properties and wind
speeds in straits. We remark that the role of the limiting
viscosity ζmin in the flux of sea ice is largely unappreciated
and is likely to limit the sea ice export associated with the
breakup of ice bridges due to the appreciable internal
stresses upstream of the arch. Although it is common
practice in sea ice modeling to take the limiting viscosity
ζmin to be a constant independent of h or c, our results do not
rely on this assumption and are more generally applicable.
Our study of ice bridges in narrow straits quantifies an

important geophysical phenomenon that has consequences
for both climate and ecology. We have shown that the
formation of ice bridges can be understood in terms of a
yield-stress mechanism and have provided quantitative
predictions both for the critical ice properties for arch
formation, as well as the flow rates associated with wind-
driven ice motion in straits, e.g., during the breakup of such
bridges. The similarity of ice arching to the jamming of
dense granular flows and the behavior of yield-stress fluids
suggests interesting physical and mechanistic connections
between these different systems.

The authors thank J. T. Ault, D. L. Feltham, A.
Muenchow and R. H. Socolow for insightful discussions
and the Carbon Mitigation Initiative of Princeton
University for the partial support of this research.

*hastone@princeton.edu
[1] I. Stirling, J. Mar. Syst. 10, 9 (1997).
[2] R. F. Marsden, J. Serdula, E. Key, and P. J. Minnett,

Atmos.-Ocean 42, 251 (2004).
[3] R. Kwok, L. Toudal Pedersen, P. Gudmandsen, and S. S.

Pang, Geophys. Res. Lett. 37, L03502 (2010).
[4] J. P. Bowman and R. D. McCuaig, Appl. Environ.

Microbiol. 69, 2463 (2003).
[5] K. A. Hobson, A. Fisk, N. Karnovsky, M. Holst, J.-M.

Gagnon, and M. Fortier, Deep Sea Res. Part II Top. Stud.
Oceanogr. 49, 5131 (2002).

[6] M. D. Coon, G. A. Maykut, and R. S. Pritchard, AIDJEX
Bull. 24, 1 (1974).

[7] M. Leppäranta, The Drift of Sea Ice (Springer Science &
Business Media, Berlin, Germany, 2011).

[8] W. D. Hibler, III, J. K. Hutchings, and C. F. Ip, Annals of
Glaciology 44, 339 (2006).

[9] K. E. Trenberth, Climate System Modeling (Cambridge
University Press, Cambridge, UK, 1992).

[10] W. D. Hibler, III, J. Geophys. Res. 82, 3932 (1977).
[11] W. D. Hibler, III, J. Phys. Oceanogr. 9, 815 (1979).
[12] The plastic part of the rheology follows from assuming that

the plastic stresses lie on an elliptic yield curve with
eccentricity α and that a normal flow rule relates stress to
strain rate. The additional viscous regularization for very
small strain rates in [10,11] is not important here.

[13] P. Jop, Y. Forterre, and O. Pouliquen, Nature (London) 441,
727 (2006).

[14] Y. Forterre and O. Pouliquen, Annu. Rev. Fluid Mech. 40, 1
(2008).

[15] D. L. Henann and K. Kamrin, Proc. Natl. Acad. Sci. U.S.A.
110, 6730 (2013).

[16] A. S. Thorndike, D. A. Rothrock, G. A. Maykut, and R.
Colony, J. Geophys. Res. 80, 4501 (1975).

[17] S. Toppaladoddi and J. S. Wettlaufer, Phys. Rev. Lett. 115,
148501 (2015).

[18] A. V. Wilchinsky and D. L. Feltham, J. Phys. Oceanogr. 34,
2852 (2004).

[19] D. L. Feltham, Annu. Rev. Fluid Mech. 40, 91 (2008).
[20] E. C. Hunke and J. K. Dukowicz, J. Phys. Oceanogr. 27,

1849 (1997).
[21] N. J. Balmforth and R. V. Craster, J. Non-Newtonian Fluid

Mech. 84, 65 (1999).
[22] I. Frigaard and D. Ryan, J. Non-Newtonian Fluid Mech.

123, 67 (2004).
[23] A. Harten, P. D. Lax, and B. van Leer, SIAM Rev. 25, 35

(1983).
[24] R. J. LeVeque, Finite Volume Methods for Hyperbolic

Problems (Cambridge University Press, Cambridge, UK,
2002), Vol. 31.

[25] D. Dumont, Y. Gratton, and T. E. Arbetter, J. Phys.
Oceanogr. 39, 1448 (2009).

[26] S. A. Stelma, Master’s thesis, University of Delaware,
2015.

[27] R. M. Samelson, T. Agnew, H. Melling, and A. Münchow,
Geophys. Res. Lett. 33, L02506 (2006).

[28] R. Kwok, Geophys. Res. Lett. 33, L16501 (2006).

FIG. 4. Phase diagram of the steady-state flow as a function of
initial ice thickness hi (with ci ¼ 1) and the thickness scale
αfwmax=S for a channel with wmin ¼ wmax=2 ¼ 25 km. The
reduced-order theory predicts unimpeded flow if hi <
αfwmin=S (shaded green), fully arrested flow if hi >
αfwmax=S (shaded red), and the formation of ice bridges for
intermediate values, αfwmin=S > hi > αfwmax=S (shaded blue),
with both arrested and flowing regions. Depending on the initial
thickness, 2D direct numerical simulations exhibit either unim-
peded flow (green triangles), arrested motion (red circles), or ice
bridges (blue squares) at steady state. Here, we use the standard
values of S ¼ 13.75 kPa and k ¼ 20 [11,25].

PRL 118, 128701 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

24 MARCH 2017

128701-5

http://dx.doi.org/10.1016/S0924-7963(96)00054-1
http://dx.doi.org/10.3137/ao.420403
http://dx.doi.org/10.1029/2009GL041872
http://dx.doi.org/10.1128/AEM.69.5.2463-2483.2003
http://dx.doi.org/10.1128/AEM.69.5.2463-2483.2003
http://dx.doi.org/10.1016/S0967-0645(02)00182-0
http://dx.doi.org/10.1016/S0967-0645(02)00182-0
http://dx.doi.org/10.3189/172756406781811448
http://dx.doi.org/10.3189/172756406781811448
http://dx.doi.org/10.1029/JC082i027p03932
http://dx.doi.org/10.1175/1520-0485(1979)009%3C0815:ADTSIM%3E2.0.CO;2
http://dx.doi.org/10.1038/nature04801
http://dx.doi.org/10.1038/nature04801
http://dx.doi.org/10.1146/annurev.fluid.40.111406.102142
http://dx.doi.org/10.1146/annurev.fluid.40.111406.102142
http://dx.doi.org/10.1073/pnas.1219153110
http://dx.doi.org/10.1073/pnas.1219153110
http://dx.doi.org/10.1029/JC080i033p04501
http://dx.doi.org/10.1103/PhysRevLett.115.148501
http://dx.doi.org/10.1103/PhysRevLett.115.148501
http://dx.doi.org/10.1175/JPO2667.1
http://dx.doi.org/10.1175/JPO2667.1
http://dx.doi.org/10.1146/annurev.fluid.40.111406.102151
http://dx.doi.org/10.1175/1520-0485(1997)027%3C1849:AEVPMF%3E2.0.CO;2
http://dx.doi.org/10.1175/1520-0485(1997)027%3C1849:AEVPMF%3E2.0.CO;2
http://dx.doi.org/10.1016/S0377-0257(98)00133-5
http://dx.doi.org/10.1016/S0377-0257(98)00133-5
http://dx.doi.org/10.1016/j.jnnfm.2004.06.011
http://dx.doi.org/10.1016/j.jnnfm.2004.06.011
http://dx.doi.org/10.1137/1025002
http://dx.doi.org/10.1137/1025002
http://dx.doi.org/10.1175/2008JPO3965.1
http://dx.doi.org/10.1175/2008JPO3965.1
http://dx.doi.org/10.1029/2005GL025016
http://dx.doi.org/10.1029/2006GL027094

