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Pattern formation in oil-in-water emulsions exposed to a salt gradient
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Flow instabilities can occur in a fluid system with two components that have significantly
different diffusivities and that have opposite effects on the fluid density, as is the scenario in
traditional double-diffusive convection. Here, we experimentally show that an oil-in-water
emulsion exposed to salt concentration gradients generates a flowerlike pattern driven
by vertical and azimuthal instabilities. We also report numerical and analytical studies
to elaborate on the mechanism, the instability criteria, and the most unstable modes
that determine the details of the observed patterns. We find that the instability is driven
by buoyancy and stems from the differential transport between the dissolved salt and
the suspended oil droplets, which have opposing effects on the density of the medium.
Consequently, we identify a criterion for the development of the instability that involves
the relative densities and concentrations of the salt and oil droplets. We also argue that the
typical wave number of the pattern formed scales with the Péclet number of the salt, which
here is equivalent to the Rayleigh number since the flow is driven by buoyancy. We find
good agreement of these predictions with both experiments and numerical simulations.

DOI: 10.1103/PhysRevFluids.4.084307

I. INTRODUCTION

Pattern formation induced by instabilities of fluid flows occurs in many systems [1–4]. Not only
are they common in nature, e.g., the fluctus clouds formed by the Kelvin-Helmholtz instability
[5], von Kármán vortex streets in clouds [6], and the crown splash formed by the Rayleigh-
Plateau instability [7], but similar instabilities also occur in applications such as spin coating
[8,9], fabrication of multiple-layered structures [10], and enhanced heat transfer [11]. Flow-driven
instability and pattern formation in both single-phase and multiphase flow systems have been studied
widely [12–16]. Recently, the instability in multiphase miscible systems with dissolution-driven
convection has been discussed (e.g., applications in CO2 sequestration) [17–19]. However, the
corresponding dynamics in a multiphase miscible system, where diffusion-driven effects occur, is
less discussed and is one of the motivations for the present work.

The other motivation of the current study is that in many multicomponent fluid systems, a variety
of fluid dynamic regimes arise since the fluid properties change with the composition of the system.
For instance, in some gravity currents propagating below an ambient fluid, dense particles can be
present in the current. In such scenarios, sedimentation of the particles changes the effective density
of the medium, which can become lower than the ambient, i.e., the effective buoyancy is reversed

*hastone@princeton.edu

2469-990X/2019/4(8)/084307(18) 084307-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevFluids.4.084307&domain=pdf&date_stamp=2019-08-30
https://doi.org/10.1103/PhysRevFluids.4.084307


LIU, RALLABANDI, ZHU, GUPTA, AND STONE

and a plume is thus observed at late times [20,21]. As another example, the thermal and solutal
Marangoni flows during the multicomponent evaporation of sessile Ouzo drops spontaneously
emulsify the liquids in the drops [22].

Some of the most widespread multicomponent fluid systems are emulsions, which are present in
various applications, and often these systems have a wide range of chemicals, e.g., salts, present. In
such cases, the droplets in the emulsion and the salt both contribute to changes in the fluid density.
Here, we show that when an oil-in-water emulsion with a high salt concentration in its aqueous
phase is injected into a horizontally oriented Hele-Shaw cell filled with a salt solution at a low
concentration, the drop spreads and a three-dimensional pattern of the emulsion appears, which
resembles a flower shape, due to the diffusion of the salt.

In the experiments we report, the emulsion with a high salt concentration in its aqueous phase
was initially denser than the ambient fluid. Due to the diffusion of salt from the emulsion into the
surrounding liquid [23], the spreading current of emulsion became increasingly buoyant over time.
Consequently, the system became unstably stratified, which forced the lighter emulsion phase to rise
towards the top of the Hele-Shaw cell and overturn. This phenomenon is similar to double-diffusive
convection [10,24–28], where there are two competing components to change the fluid density and
influence the flow, including potentially driving an instability: for the current work, oil decreased
and salt increased the density; for double-diffusive convection, heat decreases and salt increases the
density. Our work sheds light upon systems closely related to oil/water emulsions, so we anticipate
that similar phenomena may occur in many engineered flow processes.

II. EXPERIMENTS

A. Materials

Silicone oil of viscosity μo = 9.7 × 102 cP and density ρo = 0.97 g/mL, sodium chloride, and
Span-80 were obtained from Sigma-Aldrich. Tween-80 was purchased from EM Science. TP-3400
from Tracer Products was used as an oil-based fluorescent dye. Deionized water with electrical
conductivity σ = 5.4 µS/m was used for all the aqueous phases. The material properties have values
based on the typical conditions of 25 ◦C and 1 atm.

B. Emulsion preparation

An oil-in-water emulsion was prepared before each experiment. The oil phase consisted of
silicone oil and fluorescent dye at the ratio of 19:1, by volume, and the aqueous phase was a sodium
chloride solution with molar concentration cem, with a typical value cem = 100 mM. Nonionic
surfactants Span-80 and Tween-80 were both used as emulsifiers to avoid electrolyte screening
effects [29,30]. To prepare the emulsion, the oil phase was added into the aqueous phase at the ratio
1:9, by volume. The surfactants were added to this mixture: 0.03 wt% for Span-80 and 0.3 wt% for
Tween-80. Next, the solution was mixed well by using an ultrasonic dismembrator (Model 150E;
Fisher Scientific) for 5 min at 150 W output power, after which the emulsion was left standing at
room temperature (25 ◦C) for 1 h. We used the lower layer of the emulsion for the flow experiments
to exclude the large oil droplets that rose to the upper layer. The volume fraction of the oil phase
in the emulsion is denoted φ0 ≈ 0.1. Finally, the external fluid used in the flow experiment was a
sodium chloride solution with concentration cext, with a typical value cext = 1 mM.

To evaluate the size of the emulsion droplets, the emulsion was observed using a confocal
microscope (Leica SP5) and the droplet sizes were extracted from microscope images using ImageJ.
We found that the diameters of the oil droplets were d = 10 ± 5 μm. The viscosity of the emulsion
was μem = 1.09 ± 0.01 mPa · s, as measured by a rheometer (Anton Paar MCR 301). Other
parameters of the emulsion important in this study are also mentioned here: the diffusion coefficient
of the sodium chloride in water was Ds � 1.6 × 10−9 m2 s−1 [31]. The diffusion coefficient of the
oil droplets in water was Do = 1.1 × 10−13 m2 s−1, which was calculated from the Stokes-Einstein
equation [32] with average droplet diameter d = 10 μm. Since the pattern formation we observed
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was induced by the density gradient caused by the salt and the oil droplets (as documented in
Sec. IV B), we describe the effects of these two components on the fluid density, respectively, by
the two positive expansion coefficients

βo ≡ ρw − ρo

ρw

, (1a)

βs ≡ Ms

ρw

, (1b)

where Ms = 5.84 × 10−2 kg/mol is the molar mass of sodium chloride. The density of the fluid
with salt concentration c and oil volume fraction φ relative to water can be written as

�ρ = ρw[(1 − φ)βsc − βoφ], (2)

where ρw = 1.0 × 103 kg/m3 is the density of water. Note that 1 mM = 1 mol/m3, so that all the
products in Eq. (2) have the same units. It can be seen that the salt increases the density, while
the oil decreases it. The relative density of the emulsion with cem = 100 mM and φ = φ0, using
Eqs. (1a), (1b), and (2), was �ρem = 3.0 kg/m3. The relative density of the external fluid in our
experiments, i.e., sodium chloride solution with concentration cext = 1 mM and φ = 0, using Eqs.
(1a), (1b), and (2), was �ρext = 6.0 × 10−2 kg/m3. We adjusted cem and cext to change �ρem and
�ρext, which led to different flow features and a different pattern formation of the emulsion.

C. Flow cell fabrication

The experiment was conducted in a horizontally oriented, square Hele-Shaw cell of height
H = 500 ± 50 μm and side length L = 18 mm [see Fig. 1(a)]. To fabricate the cell, we first mixed
polydimethylsiloxane (PDMS) with a cross-linking agent at the ratio of 10:1, by mass, then poured
the mixture into a petri dish to form a thin layer, about 0.5 mm thick, and cured it at 75 ◦C for 2.5 h.
Next, we cut a hollow square of outer side length L = 22 mm and inner side length L = 18 mm
from the PDMS layer. A small outlet was also cut into the PDMS. The PDMS was corona treated
(Electro-Technic Products Inc.) for 30 s on both sides and sandwiched between two pieces of
identical cover glass. To finish bonding, the channel was heated at 150 ◦C for 15 min and then
cooled at room temperature. The height of the channel was measured using a confocal microscope
(Leica SP5) and a reflective channel.

D. Pattern formation

We first filled the Hele-Shaw cell with the external fluid, i.e., sodium chloride solution with salt
concentration cext, and then used a needle to inject a small drop of the oil-in-water emulsion with
a volume of about 1.6 μL and φ0 ≈ 0.1 [see Fig. 1(a)]. At this moment, the initial density of the
emulsion is higher than that of the external salt solution by 2.9 kg/m3 as estimated by Eq. (2). The
needle was withdrawn and the evolution of the emulsion was observed using a confocal microscope
(Nikon A1R HD). Initially, the emulsion had the shape of a cylinder with radius a ≈ 1.0 mm
spanning the gap of the Hele-Shaw cell [see Fig. 1(b)]. When the emulsion was denser than the
external fluid, i.e., �ρem > �ρext (cem = 100 mM and cext = 1 mM), the emulsion spread at the
bottom of the cell. Subsequently, we observed an instability that produced a pattern of the emulsion
(see the video in the Supplemental Material [33]). As we show, this pattern formation can be
understood as being produced by the diffusion of salt from the emulsion into the external solution.
The final pattern of the emulsion was reached after about 280 s as shown in Fig. 1(c). In contrast,
when the emulsion was initially less dense than the external fluid by 2.9 kg/m3, as estimated by
Eq. (2), i.e., �ρem < �ρext (cem = cext = 1 mM), the emulsion spread stably at the top of the cell
and the final pattern obtained is shown in Fig. 1(d). It turns out that an unstable density gradient
occurred in the former case, whereas the density gradient was always stable in the latter case. We
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FIG. 1. (a) Sketch of the experimental setup: a drop of dyed oil-in-water emulsion with sodium chloride
concentration cem in the aqueous phase and oil volume fraction φ0 was injected using a needle into a Hele-Shaw
cell filled with a sodium chloride solution with salt concentration cext. The needle was then withdrawn, leaving
the drop of emulsion, which flowed and formed a pattern. (b) Top view of the initial state of the emulsion (red
area) in experiments at t = 0 s. (c) Top view of the final state of the unstable emulsion pattern in experiments
at t = 280 s when the emulsion was initially denser than the external fluid, i.e., �ρem > �ρext (cem = 100 mM
and cext = 1 mM). (d) Top view of the final state of the stable emulsion pattern in experiments at t = 280 s
when the emulsion was initially less dense than the external fluid, i.e., �ρem < �ρext (cem = cext = 1 mM).
(e) Top view of the initial condition with an azimuthal perturbation with amplitude A = 0.1 and wave number
k = 12 for the numerical simulation. The red area represents an emulsion with oil volume fraction � = 1 and
dimensionless salt concentration C = 1 in the aqueous phase, and the white background represents the external
fluid with oil volume fraction � = 0 and dimensionless salt concentration C = cext/cem.

focus in the rest of the paper on conditions where �ρem > �ρext so that there is the occurrence of
an instability. The mechanism of the instability is illustrated and discussed in Sec. IV B.

III. NUMERICAL SIMULATIONS

A. Dimensional equations

In order to understand the pattern formation of the two-phase emulsion, we conducted three-
dimensional simulations using the solvers provided by the BASILISK code [34], which employs
the finite-volume method to solve the governing equations. We assumed that the viscosity was
approximately equal to the viscosity of the water for these relatively dilute systems, i.e., μem ≈ μw.
The octree grids were utilized, and the middle of the simulation domain, within which the emulsion
formed patterns, was refined. The governing equations, based on the Boussinesq approximation,
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were

∇ · u = 0, (3a)

ρw

(
∂u
∂t

+ u · ∇u
)

= −∇p + μw∇2u + [βoφ − (1 − φ)βsc]ρwgez, (3b)

∂c

∂t
+ u · ∇c = Ds∇2c, (3c)

∂φ

∂t
+ u · ∇φ = Do∇2φ, (3d)

where u is the fluid velocity and μw is the viscosity of the water. Equations (3a)–(3d) are,
respectively, the continuity equation for an incompressible flow, the Navier-Stokes equations, and
the advection-diffusion equations for salt concentration c and oil volume fraction φ.

A cylindrical volume of emulsion with azimuthal perturbations in c and φ, with wave number
k and amplitude A, was introduced in the initial condition [see Fig. 1(e)]. Introducing the polar
coordinates (r, θ ) defined in the (x, y) plane,

x ≡ r cos θ, (4a)

y ≡ r sin θ, (4b)

the initial conditions (for |z| < H/2) were

u = 0, all r, θ, z, (5a)

c =
{

cem if 0 � r � a[1 + A cos(kθ )], all θ, z,

cext if r > a[1 + A cos(kθ )], all θ, z,
(5b)

φ =
{
φ0 if 0 � r � a[1 + A cos(kθ )], all θ, z,

0 if r > a[1 + A cos(kθ )], all θ, z.
(5c)

The boundary conditions on the top and bottom walls of the Hele-Shaw cell were no slip, i.e.,

u(r, θ, z = ±H/2) = 0, (6)

with no flux of salt and oil droplets, i.e.,

∂c

∂z

∣∣∣∣
z=±H/2

= 0, (7a)

∂φ

∂z

∣∣∣∣
z=±H/2

= 0. (7b)

B. Dimensionless equations

The problem can be nondimensionalized by the characteristic values (subscript c)


c = H, (8a)

uc = φ0βoH2g

ν
, (8b)

tc = ν

φ0βoHg
, (8c)

cc = cem, (8d)

φc = φ0, (8e)

pc = ρwφ2
0β

2
o H4g2

ν2
, (8f)

084307-5



LIU, RALLABANDI, ZHU, GUPTA, AND STONE

where ν = μw/ρw is the kinematic viscosity of water. Thus, with
∇∗ ≡ 
c∇, (9a)

R ≡ r


c
, (9b)

Z ≡ z


c
, (9c)

U ≡ u
uc

, (9d)

T ≡ t

tc
, (9e)

C ≡ c

cc
, (9f)

� ≡ φ

φc
, (9g)

P ≡ p

pc
, (9h)

we obtain the dimensionless governing equations

∇∗ · U = 0, (10a)

∂U
∂T

+ U · ∇∗U = −∇∗P + Re−1∇∗2U + (Re−1� − Re−1αs,o(1 − φ0�)C)eZ , (10b)

∂C

∂T
+ U · ∇∗C = Pe−1

s ∇∗2C, (10c)

∂�

∂T
+ U · ∇∗� = Pe−1

o ∇∗2�. (10d)

Here, Re is the Reynolds number, Pes and Peo are the Péclet numbers of salt and oil droplets,
respectively, and αs,o is the ratio of the relative density of the emulsion due to the salt concentration
to that due to the oil volume fraction, which are given by

Re ≡ φ0βoH3g

ν2
, (11a)

Pes ≡ φ0βoH3g

νDs
, (11b)

Peo ≡ φ0βoH3g

νDo
, (11c)

αs,o ≡ βscem

βoφ0
. (11d)

We note that Re as defined here is commonly called the Grashof number [35–37], while Pes and
Peo are the Rayleigh numbers based on the corresponding diffusivities. The dimensionless initial
conditions are [see Fig. 1(e)] (|Z| < 1/2)

U = 0, all R, θ, Z, (12a)

C =
{

1 if 0 � R � (a/H )[1 + A cos(kθ )], all θ, Z,

ce/ci if R > (a/H )[1 + A cos(kθ )], all θ, Z,
(12b)

� =
{

1 if 0 � R � (a/H )[1 + A cos(kθ )], all θ, Z,

0 if R > (a/H )[1 + A cos(kθ )], all θ, Z.
(12c)
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TABLE I. The dimensionless parameters and their typical values in the numerical simulations, which are
consistent with experiments with cem = 100 mM and cext = 1 mM.

Dimensionless parameter

Re Pes Peo αs,o a/H cem/cext k A

2.5 1.6 × 103 2.5 × 107 2.9 1 1.0 × 102 12 0.1

The dimensionless boundary conditions are

U (R, θ, Z = ±1/2) = 0, (13a)

∂C

∂Z

∣∣∣∣
Z=±1/2

= 0, (13b)

∂�

∂z

∣∣∣∣
Z=±1/2

= 0. (13c)

(13d)

The dimensionless parameters and their typical values used in the numerical simulations are
listed in Table I; the values are consistent with the experiments with cem = 100 mM and cext =
1 mM. While keeping Re, Peo, a/H , and A fixed, we changed Pes, αs,o, and cem/cext to study their
influence on the instability/pattern formation. Different wave numbers k were also imposed with the
same sets of the other dimensionless parameters in order to extract the most unstable mode based
on the growth rate of the instability defined later in Sec. IV D. In the rest of the paper, the values of
the dimensionless parameters are the same as those in Table I except where stated otherwise. Since
Peo � Pes, i.e., the diffusion of the oil droplets was negligible [see Eq. (10d)] compared with the
convection driven by the density gradient, and so the oil droplets can be considered passive tracers
of the flow, i.e., they followed the motion of the fluid. Therefore, the emulsion/aqueous boundary
� = 1 was a streakline in the flow, and the fingering pattern represented the instability of the flow.

The dynamics of pattern formation, i.e., the time evolution of the emulsion/aqueous boundary
� = 1 in a numerical simulation with parameters listed in Table I, are shown in Fig. 2(a) at T = 30,
in Fig. 2(b) at T = 90, and in Fig. 2(c) at T = 150 (see the video in the Supplemental Material
[38]). The results show that the emulsion first spread at the bottom of the cell without obvious
enhancement of the fingering [see Fig. 2(a)], then the emulsion curled upward at radius R ≈ 1.6
[see Fig. 2(b)], and, finally, the leading edge moved inwards and the fingering grew significantly
[see Fig. 2(c)].

IV. RESULTS AND DISCUSSION

A. Comparison of the experimental and the simulation results

The results of the experiments and the numerical simulations are compared in this section. For
consistency, all of the dimensionless parameters in the numerical simulation in Table I were calcu-
lated with Eq. (11a)–(11d) using the experimental parameters, except that we imposed the azimuthal
wave number k and amplitude A. The good qualitative agreement between the computational and the
experimental results is shown in Fig. 2 (see also the videos in the Supplemental Material [33,38]).
In the experiments with both cem = 100 mM and cext = 1 mM and the numerical simulations with
consistent dimensionless parameters (values in Table I), the emulsion first spread along the bottom
and then curled upward. The fingering developed radially inwards at late times (see the videos in
the Supplemental Material [33,38]). The top [see Fig. 2(d)] and side [see Fig. 2(e)] views of the
final three-dimensional structure of the emulsion fingering observed with the confocal microscope
are similar to the time evolution in the numerical simulation [see Fig. 2(c)].
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FIG. 2. Comparison of the three-dimensional structure of the emulsion pattern in numerical simulations
(a)–(c) and experiments (d), (e). (a)–(c) Snapshots of the three-dimensional structure of the fingering in a nu-
merical simulation with dimensionless parameters of values listed in Table I at T = 30 (a), T = 90 (b), and T =
150 (c). (d), (e) Images from an experiment with cem = 100 mM and cext = 1 mM of the top (d) and side (e)
views of the three-dimensional structure of the emulsion pattern taken using a confocal microscope at t = 280 s
(final state).

In particular, top views of the emulsion pattern in the experiments and the numerical simulations
are compared in Fig. 3 to emphasize the azimuthal instability. The top views of the fingering in
experiments with cem = 100 mM and cext = 1 mM are shown in Figs. 3(a)–3(c). We note that
even though the experimental images were taken at a particular confocal plane at a depth about
140 μm from the top, the similar emulsion patterns were also observed in a depth-averaged view
taken with a regular camera. Therefore, the depth-averaged oil volume fraction �̄ = ∫ 1/2

−1/2 �dZ [see
Figs. 3(d)–3(f)] in the numerical simulations with consistent dimensionless parameters (values in
Table I) was chosen to compare with the experimental results [see Figs. 3(a)–3(c)]. We observe that
at the early times when the emulsion spread along the bottom, the fingering pattern was weak in
both the experiment [see Fig. 3(a)] and the simulation [see Fig. 3(d)]. Even though in the numerical
simulation, �̄ was higher at the angle corresponding to the peaks of the initial perturbation,
i.e., θ = 2nπ/k, than at the angle corresponding to the valleys of the initial perturbation, i.e.,
θ = (2n + 1)π/k, where n ∈ {0, 1, . . . , k − 1}, the difference in �̄ between the peak and the valley
was small, which is shown by the much weaker azimuthal color contrast in Fig. 3(d) compared with
Figs. 3(e) and 3(f). The slight accumulation of the oil droplets at the peak can also be seen from the
ridges in the three-dimensional view in Fig. 2(b). However, after the emulsion curled upward, both
the experiments [see Figs. 3(b) and 3(c)] and the simulation [see Figs. 3(e) and 3(f)] showed obvious
fingering, which grew towards the center. This means that there was azimuthal instability driving
the oil droplets to accumulate towards the peaks from the valleys. The three-dimensional view in the
numerical simulation [see Fig. 2(c)] and experimental video (see also the video in the Supplemental
Material [33]) further illustrates that the fingering occurred at the top of the flow cell. Finally, the
time scale associated with the experiments in Fig. 3 was such that the simulations (which utilized
a/H = 1) evolved more rapidly than the experiments (for which a/H � 2); we believe that these
geometric changes influenced the time scales of the long, narrow gravity currents.

B. The mechanism of the instability

When the emulsion was denser than the external fluid, i.e., �ρem > �ρext, it flowed as a gravity
current at the bottom of the Hele-Shaw cell [23,39,40]. In this case, the emulsion also had a
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FIG. 3. Comparison of the evolution of the top views of the emulsion pattern in experiments (a)–(c) and
numerical simulations (d)–(f). (a)–(c) Top views of the emulsion pattern in experiments with cem = 100 mM
and cext = 1 mM at t = 140 s (a), t = 210 s (b), and t = 280 s (c). (d)–(f) Top views of the depth-averaged oil
volume fraction �̄ in a numerical simulation with dimensionless parameters (Table I) at T = 90 (d), T = 150
(e), and T = 210 (f). The characteristic time tc ≈ 0.1 s is obtained using Eq. 8(e).

significantly higher salt concentration than the external fluid. Then, as the salt, with dimensionless
concentration C, diffused more rapidly than the oil droplets, with volume fraction �, the bottom
layer of the fluid, which contained oil droplets, spread and progressively became less dense
than the upper layer of fluid [see Eq. (2)]. Therefore, an instability occurred (see the video in
the Supplemental Material [33]). The dynamics of this flow are similar to the phenomenon of
double-diffusive convection [10,24–28], where salty and warmer water on top of fresh and cooler
water produces salt fingers. Both in our experiments and in double-diffusive convection, there are
two components with distinct diffusion coefficients and opposite effects on the fluid density. In
particular, in our experiments, salt, which increased the fluid density, diffused much more rapidly
than the oil droplets, which decreased the fluid density [see Eq. (2)]. In the double-diffusive
convection, heat, which decreases the fluid density, diffuses much more rapidly than the salt, which
increases the fluid density. This contrast in diffusivities introduced a transition of the vertical density
gradient from stable to unstable.

The vertical convection observed in the flow in our experiments is shown in Fig. 4(a). However,
in the confined axisymmetric geometry in the current study, we observed an azimuthal instability,
which is not typically observed in the conventional double-diffusive convection. We show that both
the azimuthal instability and the double-diffusive convection together drove a secondary flow [see
Fig. 4(b)], which generated the instability and pattern formation of the emulsion.

In order to better understand the vertical instability, we looked at vertical cross sections through
the origin (R, Z) plane in the numerical simulation at the peak θ = 0 [see Figs. 5(a), 5(c) 5(e)]
and at the valley θ = π/12 [see Figs. 5(b), 5(d) 5(f)]. Both the velocity fields (vectors) and the
emulsion/water boundary (red curve), i.e., � = 1, are shown at T = 30, 120, and 210. There are
two features of note: first, the oil tended to be depleted at the valley and accumulated towards the
peak, which can be seen by the change in the area surrounded by the emulsion/water boundary
(red curve); second, the fingering only occurred at the peak angles of the initial perturbation. At
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FIG. 4. Secondary flows at R = 1.5 and T = 210 in the numerical simulation with dimensionless param-
eters listed in Table I. Colors represent the velocity magnitude; red and blue represent positive and negative
velocities, respectively. The dashed white circle represents the initial shape of the emulsion. (a) The vertical
velocity UZ . (b) The azimuthal velocity Uθ . The secondary flows, which are denoted by the arrows in (b), drive
the oil droplets to move from the valleys towards the peaks along the bottom layer of the flow cell and then
upwards, hence enhancing the fingering.

late times, the vertical velocity at the emulsion front at the valley was downward, while that at the
peak was upward. The emulsion at the peak was carried by the upward flow to the upper half of the
Hele-Shaw cell and then brought inward by the backflow [39].

In order to understand the secondary flow, we establish a dimensionless depth-averaged flow
model. We denote the total velocity U as the sum of the horizontal velocity V (R, θ, Z, T ), i.e., the
velocity in the (R, θ ) plane, and the vertical velocity UZ (R, θ, Z, T )eZ , which is written as

U = V (R, θ, Z, T ) + UZ (R, θ, Z, T )eZ . (14)

0-1-2  1 2 0-1-2  1 2
R R

0 0.002 0.004 0.006 0.008 0.01
|U|

T=30

T=120

T=150

(a)

(c)

(e)

(b)

(d)

(f)

-0.5
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0.0

-0.5

Z

Z

Z

Peak θ = 0 Valley θ = π/12

FIG. 5. Time evolution of the velocity field (arrows) and the emulsion/water boundary (blue curve), i.e.,
� = 1, in vertical cross sections through the origin (R, Z plane) in the numerical simulation (a, c, e) at the peak
θ = 0 and (b, d, f) at the valley θ = π/12, at T = 30, 120, and 210. Dimensionless parameters are listed in
Table I. The size of the arrows and the background color both represent the magnitude of the velocity.

084307-10



PATTERN FORMATION IN OIL-IN-WATER EMULSIONS …

#$$%!$"&

#$$%!$"&

#$$%($$&

#$$%!$"&

#$$%!$"&
A:  = - /24
B:  = /24

(a)

peak valley

4.0

0.0

-4.0

0.0- 0.25- 0.5  0.25  0.5

10
-4

 U

Z

peakvalley

(c)(b)

2.0

-2.0
A B

valley

0.16-0.29 0.62

X

Z

Y

R

R = 1

R = 1.5

FIG. 6. Illustration of the mechanism of the instability. (a) Emulsion/water boundary � = 1 in the
numerical simulation, with dimensionless parameters listed in Table I, at T = 30 (left panel) and the cross
section at R = 1.5 (right panel). The height of the emulsion is greater at the peaks than the valleys. (b) Density
distribution at R = 1.5, T = 210, where green, yellow, and blue represent zero, positive, and negative
velocities, respectively. The dashed white circle represents the initial shape of the emulsion. (c) Results of the
numerical simulation of the azimuthal velocity Uθ as a function of Z at R = 1.5 and T = 210 at θ = −π/(2k)
[red curve; also, point A in (b)] and θ = π/(2k) [blue curve; also, point B in (b)], where k = 12.

We derive the expression of the horizontal velocity as a cubic function of Z (see Appendix A)
[39,41–43],

V = −1

6
(βoφ0)−1Z

(
Z − 1

2

)(
Z + 1

2

)
∇∗

hor

(
ρ

ρw

)
, (15)

where ρ̄(R, θ ) is the depth-averaged density, and ∇∗
hor = ∂

∂R + 1
R

∂
∂θ

is the gradient in the (R, θ ) plane;
for ρ̄ independent of θ , the flow is purely radial. It can be seen from Eq. (15) that the horizontal
velocity in the lower half of the flow cell, i.e., V |Z<0, is in the opposite direction of the horizontal
gradient of the depth-averaged fluid density ∇∗

hor(ρ/ρw ), while the direction is changed in the upper
half of the flow cell. At late times when the salt diffuses horizontally away from the aqueous phase
of the emulsion, the density of the emulsion becomes lower than the ambient fluid. The initial
perturbation of the emulsion [see Fig. 1(d)] causes the height of the emulsion at the peaks to be
larger than that at the valleys [see Fig. 6(a)], which causes an azimuthal density distribution [see
Fig. 6(b)]. It is obvious that the depth-averaged density has an azimuthal distribution: the density
at the peaks (more emulsion) is now lower than that at the valleys (ρpeak < ρvalley). This density
distribution drives the horizontal velocity V towards the peak at Z < 0 and towards the valley at
Z > 0 [see Fig. 6(c)], which leads to the secondary flow shown in the numerical simulations reported
in Fig. 5(b).

C. The criteria of the instability: The influences of αs,o and cem/cext

Given that there are two components, i.e., salt and oil, with opposite influences on the density of
the fluid and significantly different diffusion coefficients, the instability is not guaranteed unless two
criteria are satisfied: (i) The emulsion should be denser than the external fluid at the beginning; and
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(ii) the emulsion should become less dense than the external fluid as time progresses. Specifically,
the two criteria of the instability in our problem are given by

αini ≡ �ρem,ini

�ρext
= cem

cext

(
1 − φ0 − α−1

s,o

)
> 1, (16a)

αfinal ≡ �ρem,final

�ρext
= 1 − φ0 − α−1

s,o < 1, (16b)

where αini and αfinal represent, respectively, the initial and final ratios of the density of the emulsion
compared to the external fluid. Here, we assume that the volume of the Hele-Shaw cell is much
larger than the volume of the emulsion, so that the salt concentration of the external fluid changes
negligibly. Note that Eq. (16b) is always satisfied (φ0 > 0, αs,o > 0), so that the instability criteria
reduce to Eq. (16a). Hence, we observe that two dimensionless parameters, αs,o and cem/cext, play
roles in determining the stability of the flow.

The stability diagram with axes αs,o and cem/cext is shown in Fig. 7(a), where both the
experimental and the numerical results are compared with the hypothesized stability criterion
[Eq. (16a)]. The results show that all of the experiments with stable results (blue circles) and
numerical simulations with stable results (blue crosses) and unstable results (red crosses) lie in
the regime expected by Eq. (16a). Most of the experiments with unstable results (red diamonds)
agree with the prediction of Eq. (16a) except for one experiment with αs,o = 4.9 × 10−1 and
cem/cext = 1.0 × 102 where mineral oil was used. The reason for the outlier might be that mineral
oil was much less viscous than silicone oil so the oil droplets were smaller in the emulsion made
with mineral oil rather than with silicone oil by the same ultrasonication process [44,45]. This would
have led to a much higher oil volume fraction and much higher effective viscosity of the mineral oil
emulsion, which might cause another instability related to viscosity gradients.

D. The growth rate of the instability and the most unstable mode: The influence of Pes

We conducted the simulations starting from an initial condition with different wave numbers; the
oil volume fraction for an initial condition with a specific wave number k is denoted �k . In order to
quantify the azimuthal instability in a numerical simulation for the initial wave number k, we define
the average azimuthal oil volume fraction as the integral of the oil volume fraction �k across radius
R and depth Z , given by

�k (θ, T ) ≡
∫ ∞

0

∫ 1/2

−1/2
�k (R, Z, θ, T )RdZdR. (17)

This definition corresponds to the average azimuthal oil distribution in the numerical simulations
[see Figs. 3(d)–3(f)] and is also consistent with the azimuthal intensity distribution in the exper-
imental images [see Figs. 3(a)–3(c)]. The instability is quantified by the amplitude of �k (θ, T ),
which is the difference between the values at the peaks, i.e., θp = 2nπ/k, and those at the valleys,
i.e., θv = (2n + 1)π/k, where n ∈ {0, 1, . . . , k − 1}. The amplitude of �k (θ, T ) is given by

��k (T ) = �k (θp, T ) − �k (θv, T ). (18)

The time evolution of ��k (T ) for k = 3, 5, 12, 24, and 48 in numerical simulations with
dimensionless parameters listed in Table I is shown in Fig. 7(b). At very early times, the amplitude
does not increase significantly because the initial condition is stably stratified. After salt has diffused
sufficiently out of the spreading emulsion, the instability sets in, causing ��k (T ) to grow. Since the
horizontal axis T is linear, whereas the vertical axis ��k (T ) is logarithmic, beyond an early-time
transient, the amplitudes ��k (T ) for different k values approximately follow an exponential
relation in T ,

��k (T ) ∝ exp (σkT ), (19)
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FIG. 7. Instability criteria, growth rate, and most unstable mode of the instability. (a) Stability diagram
showing the effects of dimensionless parameters cem/cext and αs,o, with other dimensionless parameters listed in
Table I. When cem/cext and αs,o increase and αini [see Eq. (16a)] changes from below 1 to above 1, the results of
both the experiments and the numerical simulation change from stable (blue circle and blue crosses) to unstable
(red diamonds and red crosses). (b) Time evolution of the amplitude of the azimuthal oil volume fraction
��k (T ) for k = 3, 5, 12, 24, and 48 in a numerical simulation with all other dimensionless parameters listed
in Table I. (c) Growth rate of the instability σk versus azimuthal wave number k in numerical simulations with
the amplitude of initial perturbations A = 0.1 (squares) and A = 0.05 (circles) and with all other dimensionless
parameters listed in Table I. The growth rate of the dominant unstable mode in the experiment with cem =
100 mM and cext = 1 mM is also denoted by the triangle (see Appendix B). (d) Dependence of the most
unstable wave number kmax on Pes, with all other dimensionless parameters listed in Table I.

where σk is defined as the growth rate of the instability with wave number k. The results [see
Fig. 7(b)] show that the modes with intermediate k grow fastest, whereas modes with small or large
k grow more slowly. This suggests that there exists a most unstable mode kmax defined as the one
with the maximum growth rate σk .

In order to determine the most unstable mode, the growth rate of the instability σk versus the
azimuthal wave number k is shown in Fig. 7(c). The numerical simulations with the amplitudes
of initial perturbations both A = 0.1 (squares) and A = 0.05 (circles) show that the most unstable
mode kmax,num ∈ [10, 20]. The close data points for the amplitudes A = 0.05 and 0.1 indicate only
a weak influence of the amplitude of the initial perturbations. The growth rate of the dominant, i.e.,
most unstable, mode in the experiment with cem = 100 mM and cext = 1 mM is denoted by the blue
triangle (see Appendix B). The most unstable mode in experiments was kmax,exp = 12 ± 1, which
agrees with the numerical results. The growth rate measured in the experiments was also close to
that from the numerical simulations.
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We now develop a scaling argument to show the dependence of kmax on Pes, the Pélect number of
salt. We consider the growth of perturbations with an azimuthal wave number k on a spreading
current with characteristic radius R(t ). The time scale over which salt is advected across the
wavelength of the perturbation Lk = 2πR/k is t (k)

u ≈ Lk/[gH3�ρ/(12μwR)]. Meanwhile, azimuthal
disturbances are smoothed out by diffusion over a time scale t (k)

D ≈ L2
k/Ds. If the advection is fast

(t (k)
u � t (k)

D ), the compositions of both the emulsion and the surrounding liquid remain unchanged.
This situation results in a stably spreading gravity current, as the spreading emulsion is always more
dense than the surrounding liquid by virtue of containing more salt. By contrast, if the diffusion of
salt is fast (t (k)

D � t (k)
u ), azimuthal perturbations of the salt concentration relax exponentially before

the emulsion has had time to advect. However, since the current also diffuses radially, axisymmetric
modes of the concentration field remain and dominate the mode of instability.

Thus, in both the advection-dominated limit [small wave numbers, k � gH3�ρ/(12μwDs)] and
the diffusive limit [large wave numbers, k � gH3�ρ/(12μwDs)], azimuthal structures are either
stable or subdominant to an axisymmetric overturning instability. It stands to reason that the most
unstable azimuthal mode corresponds to a balance between advection and diffusive transport, which
yields the condition kmax ∝ gH3�ρ/(12μwDs) ∼ Pes. The most unstable modes kmax obtained
in experiments (red triangles) and numerical simulations (blue squares) are plotted versus Pes

after fixing other dimensionless parameters in Fig. 7(d). Both experimental and numerical results
demonstrate the roughly linear dependence of kmax on Pes.

V. CONCLUSION

In this paper, we have shown experimentally that when a drop of an oil-in-water emulsion
with a high salt concentration in its aqueous phase was injected into a Hele-Shaw cell filled with
a salt solution of a low concentration, the drop spread and a flowerlike pattern of the emulsion
appeared. We performed a large number of experiments varying the relative density difference and
the ratio of the salt concentrations. We then conducted numerical simulations of this problem. The
experimental and numerical results agree well both qualitatively and quantitatively for describing
the main features of this pattern-forming instability. The numerical results confirm the hypothesis
that the change in the fluid density caused by salt and oil is the key. Initially, the emulsion was denser
than the ambient fluid, so it spread along the bottom of the cell. However, as it spread, salt, which
diffused much more rapidly than the oil droplets, diffused from the droplet phase to the surrounding
medium so that the drop finally became less dense than the ambient fluid. This transport introduced
an unstable vertical density gradient. We also described the corresponding secondary flow, which
was in the form of an azimuthal instability, by establishing a depth-averaged analytical model. The
criterion for pattern formation, the growth rate of the instability, and the most unstable mode of the
instability are also discussed here in terms of the dimensionless parameters.

The current work suggests the possibility of enhancing oil-water mixing by generating a salt
gradient. For example, it has been observed that higher oil recovery can be obtained by flooding
an oil reservoir containing high-salinity formation brine with low-salinity water, but the underlying
mechanism is poorly understood [46–48]. Considering that the Reynolds number and the Péclet
number are comparable between the current work and the oil reservoirs with large pore sizes, close
to the height of the Hele-Shaw cell, e.g., sandstone and mudstone [49,50], the current work suggests
a possible mechanism by which the vertical and horizontal instabilities induced by a salt gradient
drive the oil from pores that are otherwise difficult to reach, which may help explain the enhanced
oil recovery.
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APPENDIX A: DEPTH-AVERAGED MODE

By assuming that |UZ | � |V | and inertia is negligible, the momentum equation, (10b), reduces
to the stress balance

∂P

∂Z
= −(βoφ0Re)−1 �ρ

ρw

, (A1a)

∇∗
horP = Re−1 ∂2V

∂Z2
, (A1b)

where ∇∗
hor represents the gradient in the (R, θ ) plane. We use the depth-averaged idea to further

simplify Eqs. (A1). By writing the density �ρ as the sum of the depth-averaged density ρ̄ and
the deviation ρ ′, i.e., �ρ(R, θ, Z ) = ρ(R, θ ) + ρ ′(R, θ, Z ), and assuming that |ρ ′| � |ρ|, we can
integrate Eq. (A1a) and arrive at

P(R, θ, Z ) = P0(R, θ ) − (βoφ0Re)−1Z

(
ρ

ρw

)
, (A2)

where P0(X,Y ) is the pressure at Z = 0. By substituting Eq. (A2) into (A1b), integrating across the
depth of the Hele-Shaw cell, and applying the no-slip boundary condition, V (Z = ±1/2) = 0, we
obtain the expression of the horizontal velocity,

V (R, θ, Z ) = Re Z (Z − 1)∇∗
⊥P0 − 1

6
(βoφ0)−1Z

(
Z − 1

2

)(
Z + 1

2

)
∇∗

hor

(
ρ

ρw

)
. (A3)

By substituting Eq. (A3) into the continuity equation ∇∗
hor · U = 0, integrating it across the depth of

the Hele-Shaw cell, and applying the no-slip boundary condition that U (Z = ±1/2) = 0, we find

∇∗
horP0(R, θ ) = 0. (A4)

Combining Eq. (A4) with boundary condition P0(R → ∞) = P∞(T ), we obtain a homogeneous
pressure P0, which further simplifies Eq. (A3) to Eq. (15).

APPENDIX B: PROCESSING EXPERIMENTAL IMAGES

In order to extract the most unstable mode kmax, i.e., the mode with the maximum growth rate σk ,
we processed the experimental images of the top views of the emulsion patterns [see Figs. 3(a)–3(c)]
in the following steps. First, the images were imported into MATLAB and converted to black-and-
white formats. This yielded an Nx × Ny intensity matrix I , with element I (i, j) representing the
intensity of the pixel in the ith row and jth column. To extract the background, the pixels with
intensity I (i, j) lower than a threshold were set to equal 0. The center of the pattern (xc, yc) was
determined manually. Next, we calculated the azimuthal intensity 〈I〉θ sampled on θ = nπ/180
with n = 0, 1, . . . , 359 by

〈I〉θ =
∑

r∈Z+ ⋂
D

rI (r cos θ + xc, r sin θ + yc), (B1)

where I (r cos θ + xc, r sin θ + yc) was obtained by two-dimensional interpolation, and D is the
group of r satisfying

0 � r cos θ + xc � Nx − 1, (B2a)

0 � r sin θ + yc � Ny − 1. (B2b)
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FIG. 8. Results of processing the experimental image in Fig. 3(c). (a) Azimuthal intensity 〈I〉θ as a function
of θ in Fig. 3(c). (b) Result of the Fourier transform of 〈I〉θ .

The azimuthal intensity 〈I〉θ as a function of θ in Fig. 3(c) is shown in Fig. 8(a) with obvious
intensity peaks that correspond to the fingers in Fig. 3(c). The most unstable mode kmax was extracted
by Fourier transforming the azimuthal intensity 〈I〉θ . The result of Fourier transform is shown in
Fig. 8(b): the most unstable mode kmax = 12 with maximum amplitude Ak is denoted by the arrow.
The higher modes with lower amplitudes are not shown here. The dimensionless growth rate σk of
the most unstable mode kmax is determined in terms of the amplitude Akmax by

Akmax (t ) ∝ exp (σkt/tc), (B3)

where Akmax (t ) is the amplitude of the most unstable mode kmax = 12 at time t .
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