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Rotation–translation coupling of soft objects in
lubricated contact

Arash Kargar-Estahbanati and Bhargav Rallabandi *

We study the coupling between rotation and translation of a submerged cylinder in lubricated contact

with a soft elastic substrate. Using numerical solutions and asymptotic theory, we analyze the

elastohydrodynamic problem over the entire range of substrate deformations relative to the thickness of

the intervening fluid film. We find a strong coupling between the rotation and translation of the cylinder

when the surface deformation of the substrate is comparable to the thickness of the lubricating fluid

layer. In the limit of large deformations, we show that the bodies are in near-Hertzian contact and

cylinder rolls without slip, reminiscent of dry frictional contact. When the surface deformation is

small relative to the separation between the surfaces, the coupling persists but is weaker, and the

rotation rate scales with the translation speed to the one-third power. We then show how the external

application of a torque modifies these behaviors by generating different combinations of rotational and

translational motions, including back-spinning and top-spinning states. We demonstrate that these

behaviors are robust regardless of whether the elastic substrate is thick or thin relative to the length

scales of the flow.

1 Introduction

Lubricating two contacting surfaces in relative motion with an
intervening viscous fluid can reduce wear by lowering friction.1

Classical studies of lubricated contacts focused on metal
surfaces, due to their application in bearings2,3 and pistons.4,5

In recent years, however, the popularity of soft materials has
drawn attention to soft lubricated contacts where at least one of
the contacting surfaces is deformed significantly by the contact
pressure. The basic principles of soft lubrication are also rele-
vant in applications such as biomechanics of synovial joints,6

the motion of blood cells in capillaries,7 eggs through the
oviduct,8 and particles moving in soft channels9 or near elastic
membranes,10 to name a few.

The tight coupling between elasticity of the contacting solids
and the intervening fluid flow allows soft lubricated systems to
support both normal and tangential applied forces. Experimental
studies of soft lubricated flows have used both interferometry11–13

and contactless mechanical probes.14,15 Theoretical treatments
typically require numerical analysis,16,17 although analytical
solutions are available in asymptotic limits. In the limit of large
normal loads, the geometry approaches that of classical Hertzian
contact,18,19 separated only by an extremely thin film of fluid
supported by the relative motion of the surfaces.20,21 In the
opposite limit of small normal loads, the surfaces slide with a

relatively thick fluid film and the surfaces are only slightly
deformed.22–24 These ideas have been quantified experimentally
and theoretically both for soft objects and for rigid objects with
soft coatings. Previous work has studied soft substrates much
thicker than typical length scales of the flow,15,20,25 very
thin compressible soft coatings on rigid substrates,21,26–29 and
substrates of intermediate thicknesses23,30,31 in both two- and
three-dimensional settings.

A focus of previous work has been to study the relationships
between sliding speeds and the resulting lift and drag forces
(normal and tangential to the motion, respectively). In particular,
elastohydrodynamic lift forces have been used to infer the
mechanical properties of soft surfaces,14,32 sort particles and
cells in microfluidics33 and understand the radial migration of
particles in blood micro-circulation.13 By contrast, applications
such as soft robotics,34 tribo-rheometry of soft surfaces35,36 and
lubrication of artificial synovial joints37,38 have focused on drag
forces in lubricated soft systems.

Recent experiments have shown that, in addition to the lift
force, lubricated sliding between soft surfaces also generates an
elastohydrodynamic torque.28,29 This leads to an spontaneous
rotation of a suspended cylinder sliding past a compliant
substrate, at a rate that approaches its translation speed. By
contrast, theoretical analyses for small deformations with both
thin39 and thick25 elastic coatings find rotation rates that are
far lower than those measured experimentally. Rotation also plays
an important part of lubricated tribometric experiments34,35 that
use large normal loads, where the solid deformation is large
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relative to the fluid film thickness and the contact is
Hertzian. However, the coupling between rotation and transla-
tion, and their relation to the torque on the system, remains
largely investigated outside the small-deformation (non-Hertzian)
regime.

Here, by allowing for Hertzian contacts, we show that
rotation and translation are very tightly coupled in soft lubricated
systems. In particular, we find that rotation rate of a torque-free
cylinder sliding past a soft substrate approaches its translation
speed as the substrate becomes more compliant, while
simultaneously recovering the results of Rallabandi et al.39 for
stiff substrates. We also discuss the rotation of objects subject
to an applied torque and find several interesting phenomena
including backspin behaviors with rotation and translation in
either direction, and multiple possible states for the same torque
distinguished by different fluxes through the lubricating
fluid film. We understand these results using a combination of
physical arguments, scaling analysis and asymptotic theory, and
show that the qualitative features are robust independent of the
thickness of the solid layer and the precise mode of solid
deformation.

This paper is organized as follows: in Section 2, we set up the
model governing the lubricated flow and deformation of a thick
elastic solid. In Section 3, we discuss numerical solutions of the
elastohydrodynamic problem under the specified dynamical
constraints of force and torque. We show how solutions to the
problem yield a relationship between rotation and translation
in Section 4. We investigate both torque-free rotation as well as
situations in which rotation is driven under a finite externally
applied torque. In Section 5, we study the analogous problem
for thin compressible coatings and find that the physical
arguments that lead to translation–rotation coupling remain
qualitatively unchanged, before concluding in Section 6.

2 Formulation
2.1 Governing equations

We consider the motion of a cylinder submerged in a fluid near
a soft substrate that translates with the velocity vw as depicted
in Fig. 1. The fluid is assumed to be Newtonian with viscosity m,
and the flow is assumed to be incompressible and at steady
state. We treat the soft substrate as a linearly elastic material
with shear modulus G and Poisson’s ratio n. A normal force L
is applied to the cylinder and keeps it near the deformable
surface. Additionally, an external torque T (defined counter-
clockwise positive) may also be applied to the cylinder. Stresses
of the flow together with the applied torque drive the cylinder
to rotate with angular velocity o, which is apriori unknown. The
goal is to then relate this rotation rate to the translation speed
of the surface for a specified load L and torque T.

Relative motion between the surfaces establishes a fluid film
of thickness h(x) between the cylinder and the elastic substrate.
We assume that the cylinder radius R is considerably greater
than the fluid film thickness and that the inertia of the flow is
negligible. Thus, lubrication theory can be employed in the

entrained fluid layer and the velocity can be written as

vx¼
1

2m
@p

@x
ðzþdÞðzþd�hÞþ zþd

h
ðRoÞþ vw 1�zþd

h

� �
; (1)

where p(x) is the pressure, d(x) is the surface deformation of the
soft layer (defined positive when the solid is depressed) and
z and x represent the normal and horizontal coordinate axes,
respectively (Fig. 1). Requiring that the fluid flux remain con-
stant at steady state leads to the Reynolds lubrication equation

@

@x
h3
@p

@x
�6mðvwþRoÞh

� �
¼ 0: (2)

The Reynolds equation does not depend independently on
the translational or rotational velocities but only on their sum
(vw + Ro), which is often referred to as the entrainment velocity.

The film thickness h(x) is a function of the cylindrical
geometry as well as the surface deformation d(x) of the elastic
material. In the vicinity of the lowest point of the cylinder (x = 0),
we can write

hðxÞ ¼ �cþ x2

2R
þ dðxÞ; (3)

where c is the cylinder penetration depth at x = 0 and is constant
at a given entrainment velocity. Positive c indicates that the
cylinder penetrates the undeformed nominal surface of the layer,
as sketched in Fig. 1, while negative c corresponds to a finite
clearance between the undeformed surfaces.

The deflection of the soft layer d in (3) is related to the
pressure p in the fluid layer via the elastic response of the soft
substrate. In this paper, we discuss this response for two
limiting cases, namely a thick elastic substrate and a thin
compressible elastic coating. We will focus primarily on thick
substrates (i.e. an elastic half-space), where the surface defor-
mation is related to the applied pressure by an integral
equation40

Fig. 1 Sketch of the geometry and the coordinate system for an infinite
cylinder submerged in a fluid and rotating parallel to a soft moving
substrate.
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d ¼ �1� n
pG

ð1
�1

ln jx� sjpðsÞds; (4)

valid in the limit d �
ffiffiffiffiffiffiffiffiffi
jcjR

p
. Note that (4) is only defined up to

an arbitrary datum under two-dimensional elasticity;40 this
detail is absorbed into the definition of c in (3). The limit of

a thin (and compressible) coating of thickness d �
ffiffiffiffiffiffiffiffiffi
jcjR

p
will

turn out to be qualitatively (and in some limits, quantitatively)
similar and will be discussed in Section 5.

Eqn (2) and (3), subject to conditions of vanishing pressure
p(�N) = 0, yield a coupled system for the pressure p(x).
However, two parameters of the problem, viz. the vertical
location of the cylinder c and the rotation rate o, remain
unspecified. These are determined self-consistently so that
the stresses of the flow counteract the applied normal load L
and the applied torque T, necessary to keep the system in
equilibrium. These conditions are written as

L ¼
ð1
�1

p dx; (5a)

T ¼
ð1
�1

R
@vx
@z
jz¼�dþhdx¼R

ð
1

1 h

2

@p

@x
�m
h
ðvw�RoÞ

� �
dx; (5b)

The system (2)–(5) now simultaneously determines the pressure
p(x), the vertical location of the cylinder c and the angular velocity
o in terms of vw, the applied normal load L, the applied torque T
and the geometric and material properties of the system.

2.2 Non-dimensionalization

We solve a rescaled form of the governing equations. Our
normalization is based on the limit of small velocities wherein,
under a finite normal load L, the surfaces approach ‘‘dry’’
Hertzian contact.40 In this dry limit, the surfaces make solid
to solid contact over a horizontal contact length 2a. The contact
is associated with a pressure whose maximum we denote by
pmax. Using (7), we introduce normalized quantities (indicated
by overbars) as

�x ¼ x

a
; �h ¼ h

a2=ð2RÞ; �c ¼ c

a2=ð2RÞ; �p ¼ p

pmax
: (6)

For thick elastic substrates (d c a), a and pmax are related to
the applied load L and the geometric and elastic properties of
the system by40

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� nÞ

pG
RL

r
; pmax ¼

2L

pa
: (7)

Defining a normalized sliding velocity l and a normalized
rotational velocity O by

l ¼ 6p2mGRvw
ð1� nÞL2

and O ¼ 6p2mGR2o
ð1� nÞL2

; (8)

and a normalized entrainment velocity

L ¼ lþ O ¼ 6p2mGR
ð1� nÞL2

ðvw þ RoÞ; (9)

the governing equations (2)–(4) rescale as

@

@�x
�h3
@�p

@�x
� L�h

� �
¼ 0; (10a)

�h ¼ ��cþ �x2 � 2

p

ð1
�1

ln j�x� �sjpð�sÞd�s; (10b)

subject to boundary conditions %p(�N) = 0. The condition of
normal force balance (5a) rescales as

ð1
�1

�p d�x ¼ p
2
: (11)

The entrainment velocity L can alternatively be interpreted
as a dimensionless compliance: small L correspond to soft
substrates (small shear modulus G), whereas large L occur for
relatively stiff substrates.

Observe that the (10a) and (10b) form a complete system in
terms of the sole parameter L (the normalized entrainment
velocity) but do not depend individually on l and O. The
solution of this system thus yields %p(x), %h(x) and %c in terms of
L, which we detail in the forthcoming Section 3. The relation
between O and l is determined by the torque condition (5b),
which we discuss and enforce subsequently in Section 4.

3 Solution of the elasto-hydrodynamic
problem

We first present numerical solutions of the system of
constrained integro-differential equations (10) and (11) over
the entire range of L, and interpret the results with asymptotic
arguments. The limit of L { 1 was analyzed by Bissett and
Spence,16 Wu et al.,19 Snoeijer et al.,20 Bissett41 and the limit L
c 1, by Zhang et al.,15 Skotheim and Mahadevan,23 Bertin
et al.,25 albeit using a different formulation (see Appendix). Our
numerical results span the entire range of L and are consistent
with either limit. Recently, Essink et al.21 simulated the entire
range of L using both lubrication theory and finite element
analysis, focusing on thin elastic coatings (we return to thin
coatings in Section 5). Below, we summarize the main features
of the flow for thick substrates, focusing on the cylinder’s
vertical location %c, the pressure %p and the film thickness profiles
%h as functions of L. These results are necessary for under-
standing the coupling between rotation and translation, which
we discuss later.

At each L, we solve the system of equations by first guessing
a %c. We cast the derivatives in (10a) and integral in (10b) as
matrix-vector products using finite-difference approximations,
with an analytic treatment of the integral in (10b) near
the singularity. We solve the resulting system of nonlinear
algebraic equations using Newton–Raphson iteration. While
the obtained numerical solution solves the flow eqn (10), it
does not satisfy (11) needed to ensure the balance of normal
forces. Thus, we iterate on %c until the integral condition (11) is
met within a small tolerance, yielding the solution to the
problem. For L { 1, we use a non-uniform mesh to resolve
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the problem efficiently around the contact lines %x = �1 while
maintaining accuracy.

Fig. 2 shows %c as a function of entrainment velocity L. As
depicted in Fig. 1, %c is the normalized penetration depth at x = 0
and is constant for a given L. In the (singular) limit of vanishingly
small speeds (L - 0), the solution approaches that of dry
contact and the parameter %c is found analytically to equal

�cdry ¼
1

2
1þ 2 log 2ð Þ � 1:1931; Fig. 2. As L is increased, the thick-

ness of entrained fluid film increases and the deformation of soft

layer decreases thus %c = �d(0) � %h (0) decreases. At LE 4.635, %c = 0
which corresponds to the region where the cylinder starts to
‘‘float’’ above the undeformed surface. Further increasing L
increases the separation between the surfaces (so %c becomes
negative). In the limit where L c 1, Skotheim and
Mahadevan23 provided an analytical solution, which in our nor-
malization yields %c = �48�1/3L2/3 (details in the Appendix). This
result (dashed line in Fig. 2) is in good agreement with numerical
results in this limit.

Dimensionless fluid pressure %p(%x) and thickness %h(%x) profiles
are plotted in Fig. 3a and b, respectively; the arrow shows the
direction of increase in L. The lubrication pressure decays away
from the cylinder as required by the boundary conditions. For
small entrainment speeds (L { 1), the cylinder is pushed into
the surface, squeezing out most of the fluid except for a very
thin entrained layer. In this case, the pressure distribution

approaches that of dry contact in most of the domain, �p �ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �x2
p

Y 1� �x2
� �

up to corrections involving L, with Y denot-
ing the Heaviside function. However, near the nominal contact
lines (%x B �1), the presence of the thin fluid layer smooths the
originally sharp pressure gradients of dry contacts. This
smoothing occurs over two regions of dimensional width c
around the contact lines (Fig. 1 and 3). Asymptotic theory20

shows that the width of the boundary layer scales as c B aL2/5.
As noted earlier, as L increases, there is a greater flux of fluid
through the gap, increasing the gap width, leading to smaller

pressures and smaller surface deformations. For small L, the
fluid film thickness %h = H*L3/5 (with H* = 0.389) is asymptoti-
cally constant throughout the nominal contact region (�1 o
%x o 1), consistent with analysis of Snoeijer et al.20

At the other extreme of large L, the cylinder floats far above
the surface ( %h c �d), and the pressure approaches the pure
hydrodynamic solution for the motion of a rigid cylinder
parallel to a rigid wall in a viscous fluid, plus small corrections
due to the compliance of the substrate. In this limit, our
numerical results are consistent with the analysis of Skotheim
and Mahadevan23 (the limit Z { 1 in that article).

We observe that both the pressure and film thickness
profiles depend on L = l + o, so at this stage it is not yet clear
how rotation and translation are coupled. In subsequent sections,
we show how the dynamical constraints on the applied torque
relates translation and rotation.

4 Coupling between translation and
rotation

Having solved the lubrication equations in terms of L = l + O,
we are now in a position to relate O to l using the torque

Fig. 2 Normalized indentation of bottom of cylinder %c as a function of L
(normalized entrainment velocity). The illustrations show the configuration of
cylinder and soft surface in the limiting cases, qualitatively. The indentation in
the limit L- 0 is �cdry ¼

1

2
1þ 2 log 2ð Þ. The vertical dashed line at L = 4.635 is

the location where %c crosses over from positive to negative values.

Fig. 3 (a) Normalized pressure and (b) normalized fluid thickness as a
function of horizontal coordinate %x for different values of normalized
entrainment velocity. L = 0.05, 0.5, 5, 50, 200. The arrow shows the
direction of increase in L. The dashed line corresponds to the pressure
distribution of dry contact.
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balance (5b). Using (5) the normalized torque on the cylinder is

�T ¼ T

La
¼ 1

2p
A� 1

3

L� 2O
L

B

� �
; (12a)

where

AðLÞ ¼
ð1
�1

�h
@�p

@�x
d�x and BðLÞ ¼

ð1
�1

L
d�x
�h
: (12b)

The integrals A and B depend solely on L and are obtained
using the numerical solutions for %h and %p discussed in Section
3. In (12a), the term involving A represents the contribution of
Poiseuille flow whereas the term involving B is due to the effect
of simple shear in the gap.

Rearranging (12a) yields O as a function of L and the
integrals A(L) and B(L) as

O ¼ L
2

1� 3A� 6p �T

B

� �
: (13)

Since A(L) and B(L) in (12b) are essential in understanding the
mechanism of rotation, we will first discuss their behaviour in
detail. Once we find A and B, the relation between L and O is a
rational function (13).

Fig. 4a shows plots of A(L) and B(L) for thick elastic layers,
obtained from the numerical solutions of Section 3. For small
L, the dominant contribution to A comes from the boundary
layers around the contact lines x B �1, where %h = O(L3/5) and
d%p/d%x = O(L�1/5) yielding A B CHL

4/5. The prefactor CH E 2.84
is obtained numerically. The primary contribution to B comes
from the contact region, where the film thickness is a constant
(h B H*L3/5) yielding B = 2L2/5/H*. Similarly, for large L, %p =
O(1) because of the constraint imposed by (11), %h B c B L 2/3

and the horizontal length scale
ffiffiffiffiffi
jcj

p
� L1=3; yielding A B L2/3

and B B L2/3. For both small and large L our numerical results
approach the above asymptotic relations (details are in the
Appendix). We are now in a position to use the results for A(L)
and B(L) in (13) to relate the rotation rate O to the translation
speed l = L � O.

4.1 Free rotation ( %T = 0)

We first discuss the case where no external torque is applied
( %T = 0), so the cylinder rotates freely. Fig. 4b shows the plot of O
for the different values of l when %T = 0. For small sliding
velocities, O B l, or Ro B vw, represented by a dashed line in
Fig. 4b. This asymptotic result follows from (13) as A { B
(see Fig. 4a) and represents ‘‘pure rolling’’, which occurs in the
limit of small velocities or highly compliant substrates (at fixed
normal load). Physically, the thin layer of entrained fluid
has constant thickness (L3/5H*), so hydrodynamic torque is
generated essentially by shear stress across the fluid film due to
the relative velocity l � O. Therefore, for the system to be
torque free, it is necessary for the rotational speed of the
cylinder to match its sliding speed.

An improved approximation for O retaining higher-order
terms (see Appendix) in the behaviors of A and B. We use these
terms to construct a Padé approximant O = l/(1 + 4.37l2/5)
that is asymptotic for small l, but has excellent accuracy up to

l C 4 (Fig. 4b; dotted curve). We note that the rotation speed
becomes comparable to the translation speed for compliant
surfaces (small l). This result is in qualitative agreement with
the experiments of Saintyves et al.29 which found rotation rates
as large as RO/vw E 0.7 and where it was observed that softer
substrates led to faster rotation.

For large speeds or stiff substrates (l c 1) the pressure
amplitude is O(1), leading to a deformation scale l1/3, while the
film thickness grows as l2/3. The ratio of deformation to film
thickness thus scales as d/h p l�1/3 { 1, as discussed in the
Appendix in detail. For thin compressible elastic substrates,
Rallabandi et al.39 showed that O/l p (d/h)2, and rationalized
the scaling behavior through symmetry arguments. We expect
the same symmetry arguments to apply for thick elastic
substrates, and thus we anticipate O/l p l�2/3, or O p l1/3.
This scaling estimate is borne out by numerical solutions, which
we use to make the scaling law more precise as OB 0.307l1/3; cf.
Fig. 4b. Thus, the combination of scaling arguments, asymptotic
estimates and numerical solutions provide handy approxima-
tions to O over the entire range of l for a torque-free cylinder.

Fig. 4 (a) A and B for the different values of normalized entrainment
velocity. (b) Normalized rotational velocity vs. normalized sliding velocity
for the torque free problem. The solid lines represent the numerical
solution and the dashed lines are asymptotic solutions.
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4.2 Rotation at finite torque ( %T a 0)

While we have so far considered rotation of torque-free cylinders,
several applications rely on the application of a finite torque. For
example, a mini-traction machine, a tribometric apparatus
designed to measure the frictional force in soft contacts, keeps
the probe from rotating (O = 0) by applying a finite external
torque %T.34–36 The response to applied torques is also relevant
in the study of natural or artificial lubricated joints involving
soft tissue.37,38 Therefore, we now return to (13) and discuss
the rotation–translation coupling under the application of an
external torque to the cylinder. The torque applied may either be
positive (counter clockwise) which aids rotation, or negative
(clockwise) which opposes it.

Fig. 5a plots O vs. l for different values of the normalized
externally applied torque %T, obtained by substituting the numer-
ical values of the integrals A and B into (13). As shown in Fig. 5a, for
a given translation velocity l, the cylinder is able to spin backward
(clockwise), forward (counter-clockwise) or translate without any
rotation, depending on the magnitude and direction of the external
torque. Unsurprisingly, positive %T result in larger rotation rates
than the torque-free cases, whereas negative %T yields lower rotation
rates, ultimately producing a reversal of the direction of rotation.
However, it is interesting to note that positive %T yields solutions
where the direction of translation is reversed (l o 0), leading to
multiple O at the same (negative) l (see also Fig. 5b). Similarly, the
direction of rotation may depend on the translation speed l at
some negative values of %T (e.g., the curve for %T = �0.15 in Fig. 5a
crosses the O = 0 axis). Similar to the torque-free case, we use the
asymptotics of A and B to quantify these behaviors.

Substituting the asymptotic relations for A and B for l { 1
and T{ 1 into (13), the relation between rotational and sliding
velocity becomes O B l + 3pH* %T(l + O)3/5 � 3/2H*Ch(l + O)7/5

(details in Appendix). A dominant balance for small l and O

suggest the rescaling Ô ¼ O=j �T j5=2, and l̂ = l/| %T|5/2, yielding

Ô � l̂þ sgnð �TÞ3pH�ðl̂þ ÔÞ
3
5 � 3

2
H�Chðl̂þ ÔÞ

7
5j �T j (14)

where sgn is the sign function. In these new rescaled coordi-
nates, the leading terms are independent of T, whereas the

effect of finite T occurs in a higher-order term. Indeed, numer-
ical results of Fig. 5a when suitably rescaled are well predicted
by (14), as illustrated for different values of external torque in
Fig. 5b. The numerical results start to deviate from this relation
for large l or large | %T|. As one can observe in Fig. 5b, when the
external torque is applied in the ‘‘natural’’ direction of rotation
( %T 4 0), there are some conditions wherein the cylinder
translates with a backspin (l o 0, and O 4 0, but with L =
l + O 4 0). This non-trivial behavior can also be observed in
Fig. 5a and is not limited to small torques. The analytical
solution (14) provides insight into this ‘‘turn-over’’ region of
the curves for positive torques: for example, for an applied
positive %T { 1, the maximum value of negative translation
speed that can be attained is l E 2.2 %T5/2.

Furthermore, for a prescribed external torque, there are two
equilibrium O for each (negative) value of l in the backspin
region. As a case in point, solving (14) for zero linear velocity
and %T { 1 yields: O = 0 and OE (3pH*)5/2T5/2. The first solution
represents the static condition where the objects move at
vanishingly small speeds. The second solution, however, corre-
sponds to rotation in place without translation. Whether one
solution or another is selected depends on other constraints of
the system. In particular, the external horizontal force %D on the
cylinder must also be supported by fluid stresses, so that

�D ¼ D

L
¼ 1

2p
E þ 1

4
A� 1

12

L� 2O
L

B

� �
; (15a)

where

EðLÞ ¼
ð1
�1

�x�pd�x: (15b)

While the multiplicity of solutions pointed out earlier have the
same normal load and torque, they correspond to different
values of L and thus are require different horizontal forces to
sustain.

Similarly, for external torques that are applied clockwise in
Fig. 1 ( %T o 0), we again find situations in which the cylinder
translates with a backspin, but this time with O o 0 while
maintaining l 4 0 (still with L = l + O 4 0). In analogy to the
case of %T 4 0, there are two possible l corresponding to the

Fig. 5 (a) Normalized rotational velocity O vs. normalized sliding velocity l for %T = 0, �0.05, �0.15, �0.2, �0.3. The dashed lines represents negative
torques. (b) Rescaled curves for different torques showing an approximate collapse when l, O { 1. The lines represent analytical solutions (solid lines for
T 4 0 and dashed lines for T o 0) and the symbols represent numerical solutions. (c) Large l approximation for different applied torques. The solid lines
are numerical solutions while the dashed line is an analytic result.
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same (negative) O within this backspin region. For small %T o 0,
this region of negative O ultimately yields to positive O for large
enough l due to the translation–rotation coupling overwhelming
the counteracting negative torque. However, for sufficiently
negative T, this behavior disappears and the applied torque is
able to support a backspin at equilibrium for all l.

For large translation speeds l c 1, we find from (13), using
the asymptotic behaviors of A and B (Fig. 4a) that (see Appendix)

O ¼ 0:307l
1
3 þ 3

48
1
6

�Tl
1
3: (16)

Fig. 5c shows that the above relation is in excellent agreement
with the numerical results for different values of external torque
for large l. The result (16) also identifies the smallest negative
torque required to produce backspin (O o 0) for all l 4 0, viz.
%Tback

min E �0.195. This estimate is borne out by our numerical
solutions, though we do not display this in Fig. 5.

5 Thin elastic coating

Many applications utilize thin elastic coatings on rigid
substrates.28,29 We show that our discussion for thick elastic
substrates remains qualitatively unchanged when the thickness
of the soft coating is much smaller than the horizontal length
scale of the problem (d { a). We will reuse notation from our
analysis of thick substrates for convenience. Assuming that the
solid is not strictly incompressible (n a 1/2), the relation
between pressure and deformation in this limit is local (the
Winkler approximation) and is given by d = pd(1� 2n)/(2G(1� n)).
Analogously to Section 2.2 we define the dry contact length and
the maximum dry contact pressure for thin elastic layers as21

a ¼ 3

4

L dRð1� 2nÞ
Gð1� nÞ

� �1
3
; pmax ¼

3L

4a
: (17a)

The governing equation in the fluid film is still (10a). For thin
substrates, the normalized rotational and translational velocities
are defined by

l ¼ 32
vwmR2

La2
and O ¼ 32

omR3

La2
: (18)

In dimensionless variables, the relation between deformation and
pressure is simplified to %p = �d and therefore, we write the
normalized film thickness %h as

%h = %x2 � %c + %p. (19)

Additionally, the equilibrium of normal forces (5a) and external
torques (5b) for thin layers rescale asð1

�1
�p d�x ¼ 4

3
; (20a)

�T ¼ T

La
¼ 3

16
A� L� 2O

3L
B

� �
: (20b)

We use a similar approach as that for thick layers to find the
pressure %p(x; L) and film thickness %h(x;L) for different values
of entrainment velocity. Here, we use solve the governing

equation using a shooting method instead of Newton–Raphson
iteration. Once the solution is obtained, rearranging (20b)
yields O as

O ¼ L
2

1� 3A� 16 �T

B

� �
(21)

Eqn (20b) and (21) differ from their thick-layer counterparts
(12a) and (13) only by a numerical factor.

As depicted in Fig. 6a, for L{ 1, both A and B decay like L1/2.
This is due to the feature that the fluid film is not uniform in this
limit for thin elastic layers,21 contrary to the case of thick
layers.20 Both A and B are therefore involved in the calculation
of O at leading order. As a result, in the limit of soft coatings, the
ratio of rotational to linear velocity O/l does not approach unity
as L- 0. Nonetheless, if we substitute the asymptotic values for
A and B in (21), we find O B 0.95l, which remains very close to
pure rolling. This asymptotic result is illustrated in Fig. 6b. All
indicated asymptotes in Fig. 6a and b are derived analytically
including the prefactors (see Appendix). As noted above, the
fluid film thickness for a thin elastic coating is not uniform for
L { 1. The hydrodynamic torque thus has two contributions,

Fig. 6 (a) A and B as a function of normalized mean velocity L, and (b) O
as a function of normalized linear velocity l, for thin elastic layers and zero
applied torque. Dashed lines represent the asymptotic solutions.
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one scaling as l � O, and the other depending on the pressure
gradient; both are involved in the zero-torque condition.

At the other extreme, where L c 1, analytical solutions are
found using the asymptotic analysis of Skotheim and
Mahadevan.26 The quantities A and B are qualitatively similar
to their counterparts for thick substrates. Additionally, as
depicted in Fig. 6b, O = 7/(3p10/7)l1/7, in agreement with the
analytical result of Rallabandi et al.39 (see Appendix).

By comparing Fig. 4b and 6b, we see that behaviour of the O
versus l curve is qualitatively the same for the limiting cases of
thick (d c a) and thin (compressible) elastic layers (d { a, na
1/2). Some important asymptotic behaviors for the rotation–
translation coupling with thick and thin elastic substrates are
summarized in Table 1. We note that the thin-layer theory used
here assumes that the elastic layer is thinner than all lateral
length scales, in particular also that of the boundary layer,
whose width scales as c B aL1/2. This condition can no longer
be met at sufficiently small speeds L t (d/a)2, where it
becomes necessary to account for the full (finite-thickness)
response of the layer, leading to new asymptotics as L - 0
(see Essink et al.21). We do not anticipate these effects to
significantly affect our results for rotation, since the bulk of
the rotation is caused by stresses in the thin film (and not the
boundary layers) which remains well approximated by the local
elastic model used here as long as d { a. More generally, the
finite-thickness elastic response is necessary everywhere if d is
comparable to a. However, due the observed similarities for the
limiting cases of thick and thin elastic layers, we anticipate that
the rotation behaviors discussed here are qualitatively robust
even for soft layers of intermediate thickness.

6 Conclusions

In this paper, we investigated the coupling of rotation
and translation in the lubricated motion of soft objects. For
compliant substrates, there is a strong coupling between the
rotation and translation, approaching the limit of classical
frictional rolling for highly compliant materials (Ro C vw).
This coupling is significantly stronger than was predicted
by previous approaches, which focused on relatively stiff
substrates. When the surfaces are relatively stiff, translation
and rotation remain coupled but to a lesser extent (Rop vw

1/3).
The behavior of soft contacts are found to be quantitatively
similar for thin and thick soft layers; some key quantitative
results are summarized in Table 1. Finally, we showed that
applying an external torque in either direction modifies this
coupling, yielding various combinations of translation and

rotation depending on the magnitude and direction of the
applied torque. In particular, this includes back-spinning
behavior with translation and rotation in either direction, as
well as multiple possible states for the same applied torque but
with differing fluxes. These behaviors could have implications
for the tribology of soft surfaces and may lead to new ways to
control motion in systems such as artificial joints that involve
lubricated soft materials.
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Appendix

A Asymptotic analysis for compliant
and stiff substrates
A.1 Analysis for K c 1

In this section, we establish a relation between the normal-
ization of previous works in the limit of small deforma-
tions 23,24,26,39 and the normalization we use here. We employ
the results of this section to compare our numerical results
with asymptotic solutions.

In Skotheim and Mahadevan23 the normalized relation for
the fluid thickness and the lubrication equation are written as

G ¼ 1þ Z2 þ Z
ð
QðrÞ ln jZ � rjdr; (22a)

dQ

dZ
¼ 6

G� G�

G3
; (22b)

where G and Q are the normalized thickness and pressure,
respectively, Z is the rescaled horizontal coordinate and Z is a
deformation parameter.

Comparing (22a) and (22b) with (10b) and (10a), we find that

�x ¼
ffiffiffiffiffi
jcj

p
Z, %p = L/(6|c|3/2)Q and %h = |c|G; recall that c o 0 for

L c 1. Substituting back these values in (22a), we find

Z � L
3jcj2. Additionally, we know from the literature that for a

Table 1 Relation between normalized linear velocity l and normalized rotational velocity O for the extreme conditions. l = 24kcvwmR2/(La2) and O =
24kcOmR3/(La2) where kc = p/2 for thick layers and kc = 4/3 for thin layers

Horizontal length scale Large deformation L { 1 Small deformation L c 1

Thick layers d c a
a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� nÞ

pG
RL

r
O � l � 3pH*(l + O)3/5 %T � 3/2H*Ch(l + O)7/5 = 0

O ¼ l1=3 0:307þ 3 �T

481=6

� �

Thin layers d { a
a ¼ 3

4

L dRð1� 2nÞ
Gð1� nÞ

� �1=3 O � 0.95l � 2.15(l + O)1/2 %T = 0
O ¼ 7

3p10=7
l1=7 þ 4 �T

p6=7
l2=7
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very thick soft layer
Ð
QdZ � Z

3p
16

.23 On the other hand, (11)

requires that
Ð

�pd�x ¼ p=2. By substituting %p and %x into the latter
integral, we find c as a function of L

c � �48�1=3L
2
3: (23)

Now, we can substitute (23) and the values of %x and %p into the
integral relations for A and B (12b) and find these two integrals
using the analytical solutions for the pressure (Q) and film

thickness (G). Skotheim and Mahadevan23 show that Q ¼

2Z

ð1þ Z2Þ2 þOðZÞ and G = 1 + Z2 + O(Z), using which we find that

A � 481=6

3
pL2=3; (24a)

B B 481/6pL2/3. (24b)

We used these values in Fig. 4a in the main text to verify our
numerical results in the extreme limit of L c 1. To estimate O
using (13), higher order terms in A and B are required. However,
based on the analysis in Rallabandi et al.,39 we expect O/LB Z2

when no external torque is exerted on the cylinder due to
symmetry arguments. Substituting (23) in the definition of Z
noted earlier yields Z B L�1/3. Combining these two equation,
we find that O scales as

O p L2/3
p l2/3. (25)

In the main text, we use our numerical solution to fit a
prefactor to the scaling law above. For finite torque, we use
the torque-free result for O and the solutions for A and B from
(24) to obtain (16) of the main text.

For thin layers,22 instead of (22a), the thickness is related to
the pressure by G = 1 + Z2 + ZQ(Z). However, the lubrication
eqn (22b) is still valid and one can use similar approach as
the one discussed above for thick layers to find asymptotic
relations for the two integrals A and B. These results are
depicted in Fig. 6. For thin layers, the analytical relation
between O and l for l c 1 is known39 to be O/l = 21Z2/256
(Z is defined differently for thin and thick layers but we reuse
notation). Our analysis finds Z = 16L3/7/(3p5/7), which use to
relate O and l as

O ¼ 7

3p10=7
l1=7: (26)

This relation is compared with the numerical results for large
sliding velocities in Fig. 6b. Similarly, the finite torque relations
in this limit can be found using the approach we adopted for
(16).

A.2 Analysis for K { 1

For L { 1, the contact region is divided into a central region
which resembles Hertzian contact, and boundary layer regions
where the thin film adjusts to the flow far from contact (see
details in ref. 20 and 21). In this section, we use the analytical

results found in Snoeijer et al.20 to approximate the scaling of
integrals A and B when the entrainment velocity L is small.
In the central region, we can approximate pressure by that of

dry contact: �p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �x2
p

Yð1� x2Þ where Y is the Heaviside
function. Additionally, (10) yields %h = L3/5H* + L4/5H*3d%p/d%x
where H* = 0.389 is a constant. Substituting %h and %p back into
(12b), one finds the values of A and B in central region (Ac and
Bc, respectively) to be equal to

Bc ¼
2

H�
L2=5; (27a)

Ac ¼ L4=5H�3
ð1
�1

d�p

d�x

� �2

d�x � OðL4=5Þ; (27b)

In the boundary layers around %x � 1, %p = L1/5P(x) and %h = L3/

5H(x) where x = L�2/5(%x 8 1) is a rescaled horizontal coordinate.
The contributions of the boundary layers to A and B are
therefore

Bbl ¼ L4=5

ð1
0

dx
H
� OðL4=5Þ; (28a)

Abl ¼ L
4
5

ð1
0

H
dP

dx
dx � OðL4=5Þ: (28b)

Now, the integrals A and B over the entire domain are simply
the sums of contributions from the central region (27) and the
two boundary layers (28), so

B � 2

H�
L2=5 þ BhL4=5; (29a)

A B ChL
4/5, (29b)

We used our numerical results to find the prefactors Bh = 3.30
and Ch = 2.84. The analytical results (29) are plotted along with
the numerical results in Fig. 4a. Substituting A and B from (29)
back into (13), we find O = l at the leading order when L { 1.
Retaining the higher order terms gives us even a more precise
expression O = l � 4.37l7/5. We use a Padé approximation to
rewrite this relation as (see, e.g., Bender and Orszag42)

O ¼ l
1þ 4:37l2=5

; (30)

which is an excellent approximation up to l E 4; Fig. 4b.
When a nonzero torque is applied to the cylinder, we use

(29) to rewrite the rotation rate eqn (13) as

O ¼ L
2
þ 3p

2
H� �TL3=5 � 3

4
H�ChL7=5: (31)

Substituting L = l + O yields (14).
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