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Lift forces on three-dimensional elastic and viscoelastic lubricated contacts
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When an object suspended in fluid moves past a soft substrate it experiences an ad-
ditional lift force due to the deformability of the substrate. In this work we find this lift
force analytically for a general deformable substrate in the limit of small deformations.
In particular we employ Lorentz’s reciprocal theorem to obtain a general integral relation
between the lift force and the linear response function of the soft substrate. We apply these
results to an elastic layer, and discuss the behavior of the lift force as a function of Poisson’s
ratio and the thickness of the layer, obtaining analytic results for thin and thick layers. Then
we generalize the theory to a linear viscoelastic response of the substrate. For oscillatory
relative motion between the surfaces we find that the resulting lift force is a superposition
of steady and oscillating modes whose amplitude and phase contain information about the
elastic and viscous components of the material response. Our theory makes transparent
the connection between the elastohydrodynamic lift force and the underlying response of
the substrate and can be used to characterize the mechanical properties of an arbitrary soft
material without solid-to-solid contact via lift force measurements.

DOI: 10.1103/PhysRevFluids.6.034003

I. INTRODUCTION

Lubrication flows with deformable boundaries (also known as soft lubrication) are widely
encountered and studied in engineering [1], biophysics [2], and geophysics [3]. These flows has
been studied in applications such as the rheology of polymer bearings [4], flows of cells in capillaries
[5], the behavior of vesicles near walls [6], the collision of suspended particles [7], mechanics of
earthquake and seismic faults [8], and mechanical characterization of soft surfaces [9–11]. The high
pressure, small clearance and highly deformable surfaces in these applications result in a strong
coupling between solid deformation and fluid pressure.

When a rigid symmetric object such as a sphere or a cylinder moves near a rigid wall at near-zero
Reynolds number, the pressure is symmetric and no force normal to the wall (i.e., lift) is generated,
due to reversibility of Stokes flow [12]. If the wall is compliant, however, the boundary deforms
and generates an asymmetric pressure component that produces a nonzero lift force. For small
deformations asymptotic approaches are often employed to approximate the lift force analytically
[13–15]. In the past decade, various complexities in soft lubrication such as fluid compressibility
[16], solid viscoelasticity [17], and the inertia of the fluid and the elastic medium [18] have
been examined quantitatively. Other authors have studied the effects of electrostatic and van der
Waals interactions [19], the effect of a background flow [20], or the effect of deformable channel
boundaries on the flow of suspensions [21].

There are two broad classes of elastohydrodynamic lubrication problems involving parallel
sliding between the surfaces [22]. The first involves pressing the object into the substrate, forcing
the surfaces to initially make contact (the Hertz limit [23,24]). Then, a fluid film is established solely
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due to relative motion between the surfaces [22,25,26]. For small velocities, the pressure in the thin
film is controlled by boundary layers and results in (typically noninteger) power-law dependence of
the lift force on the velocity [22,25,26]; see the review by Greenwood [27]. In the second class of
problems, a finite clearance between the surfaces is maintained even in the absence of any relative
motion [28,29]. This latter type of flow situation is non-Hertzian and can typically be analyzed with
a regular perturbation in deformation, yielding a lift force that scales quadratically with velocity
for small velocities. Here, we focus explicitly on this second situation, which is relevant for small
normal loads [22] and has been validated in experimental settings involving macroscopic sliding
and rolling cylinders [28,30] and microscopic noncontact rheometry [10,29].

Typically, the surfaces under lubrication are locally describable by a paraboloidal approximation
involving two principal curvatures. Two-dimensional configurations (e.g., a cylindrical surface)
nearby a soft wall have been analyzed extensively in past work [13,22,31,32] and often admit ana-
lytical solutions for small deformations. Corresponding three-dimensional versions of the problem
(e.g., a locally spherical surface) are typically more complex to solve perturbatively so analysis of
these problems has been restricted to some limiting cases. Urzay et al. [15] investigated the problem
of a sphere moving parallel to a Winkler solid (applicable to thin, compressible elastic layers) using
a perturbation expansion of the elastohydrodynamic Reynolds lubrication equation. More recently,
Zhang et al. [29] provided a semianalytical solution for a fully incompressible thick elastic substrate,
developing a small-deformation expansion and solving the resulting theory numerically at linear
order in the deformation amplitude.

The recent experiments of Zhang et al. [29] measure the mean lift force on the oscillating probe
tip of an atomic force microscope, in excellent agreement with their theory modeling the substrate as
an elastic half-space. This suggests the use of lift forces for noncontact microrheometry of complex
materials. However, as noted earlier, no theory exists that relates the underlying response of a
complex material to the measured lift forces, except for the limiting cases of thin and thick elastic
layers. Furthermore, oscillatory excitation (typical in microrheometry) may elicit a viscoelastic
material response, further complicating the inference of a material response from a measured lift
force.

In this work we develop a theory that addresses these points by directly relating lift forces and the
material response, both for steady and oscillatory motion between the surfaces, for arbitrary linear
responses of the underlying deformable substrate. The key feature that we build on is that the small-
deformation lift force is linear in the solid deformation, even through it is nonlinear (specifically
quadratic) in the fluid velocity. A consequence of this is that the force must be linearly related to the
linear response function of the solid. We make this relation transparent by simplifying the problem
of computing the force through the Lorentz reciprocal theorem [33], which leads to an integral
involving the deformation of the substrate. Transforming this integral to Fourier space [34,35] lets
us relate the deformation to the linear response function (i.e., the Green’s function) of the substrate.
This ultimately leads us to a general expression for the lift force in terms of the substrate Green’s
function.

We apply the formalism to the experimentally relevant situation where the soft substrate is
composed of a linearly elastic material within finite thickness. In doing so we obtain the lift force
due to an elastic layer with arbitrary thickness and Poisson ratio, recovering the results of Zhang
et al. [29] and Urzay et al. [15] in the appropriate limits. We also resolve the question of how
a nearly incompressible material (Poisson’s ratio close to 1/2) can appear compressible at small
thicknesses and obtain results in agreement with the recent analysis of thin-film elasticity [36]. We
then further develop the theory to account for the effect of substrate viscoelasticity on the lift force.
For a laterally oscillating object, we show that the lift force is time dependent, and that different
temporal Fourier modes of the lift force carry information about the storage and loss responses of
the substrate.

The paper is arranged as follows: in Sec. II, we set up the problem and present scaling laws
for small deformations. Section III develops the theoretical framework. Here, we first introduce the
reciprocal theorem which forms one of core ideas behind this work, then present relevant results for
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FIG. 1. A schematic of the problem: a sphere translates with negligible inertia in the lubrication limit
(hf � a) parallel to a soft layer. The pressure of the flow produces a small deformation of the layer,
generating an elastohydrodynamic lift force. The problem is formulated in the a reference frame attached to the
sphere.

the hydrodynamic fields, and finally obtain a general expression for the lift force due to an arbitrary
linearly-responsive substrate. In Sec. IV, we apply the theory to steady-state motion past an elastic
layer of finite thickness and discuss the dependence of the lift force for various combinations of
layer thickness and Poisson’s ratio, including asymptotic behaviors in the limits of thick and thin
layers. We then focus on the case of oscillatory excitation near a viscoelastic substrate and detail
the connection between the time-dependent lift force and the viscous and elastic components of the
material response. We conclude in Sec. V.

II. SETUP OF THE PROBLEM

We consider a rigid sphere translating with velocity vp = vp(x, t )ex parallel to a nearby de-
formable substrate. The radius of the sphere is a and the smallest separation distance between the
sphere and the undeformed wall is h f . The sphere moves in a fluid with viscosity η and density ρ f .
We focus on small Reynolds number (ρ f vpa/η � 1) and assume that the flow is incompressible.
In this case, we can disregard the effect of inertial forces compared with viscous forces and the
governing equations in the fluid reduce to the Stokes equations

∇ · v = 0 and ∇ · σ f = 0, (1)

where σ f (x, t ) = −pI + η(∇v + ∇vT ) is the stress at a point in the fluid defined using a pressure
p(x, t ) and a fluid velocity v(x, t ). We will also focus on the limit of narrow gaps (h f � a) in which
case normal stresses are dominated by pressure and the lubrication approximation is applicable.

The substrate is assumed to be soft and therefore deforms under the stresses of the flow. We
model the substrate as a linearly elastic layer with thickness hs, shear modulus μ, and Poisson’s
ratio ν that is mounted on a rigid base (Fig. 1). In Sec. IV B, we show that our main result is general
to an arbitrary linear material response, including a linear viscoelastic response. We denote the
vertical deformation of the top surface of the substrate by δ(x, t ), where it is understood that the
spatial dependence is on the coordinates (r, θ ) in the plane of the undeformed surface.

It is convenient to formulate the problem in a reference frame that is attached to the sphere. By
doing so, we measure the velocity of a perfectly rigid wall as −vp. Additionally, as depicted in Fig. 1,
we set our origin on the undeformed wall and where it has the smallest clearance with the sphere.
Thus, the deformed wall Sw is identified with z = δ(x, t ). The deformability generates an extra
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normal velocity component w = D
Dt [δ(x, t )] where D

Dt = ∂
∂t + (v · ∇) is the material derivative.

Therefore, the no-slip boundary condition at the surfaces can be written as

v = 0 on Sp, (2a)

v = −vp −
(

vp · ∇δ − ∂δ

∂t

)
ez on Sw, (2b)

where Sp and Sw represent the surface of the sphere and the deformed wall, respectively.
The deformation δ(x) is the vertical surface displacement of the solid under static equilibrium

subject to surface pressure p(x) exerted on it by the fluid. We note that the effect of tangential fluid
stresses on the deformation of the solid are comparatively small in the lubrication limit h f � a. We
restrict our attention to small deformations (δ � hs) where linear elasticity is valid. Then, δ is most
generally written in terms of a scalar Green’s function G(x) as

δ(x) = −
∫

p(y) G(x − y) d2y, (3)

where both x and y are on the undeformed surface of the solid, z = 0.
For a layer mounted on a rigid base, the Green’s function is obtained from the point-forced

solution to the equations of elasticity. We denote the displacement field in the (point-forced) solid by
u(x) = (ux, uy, uz ) and the corresponding stress tensor by σs = μ(∇u + ∇uT ) + λ(∇ · u)I, where
λ = 2μν/(1 − 2ν) is Lamé’s first parameter. The displacement field is governed by mechanical
equilibrium within the solid (∇ · σs = 0), subject to the boundary conditions

u = 0 at z = −hs (the rigid base), (4a)

n · σs = n δ2D(x) at z = 0 (the undeformed top surface). (4b)

The right side of Eq. (4b) corresponds to a point force in the ez direction at the origin (note
that n = ez on the z = 0 plane), where δ2D(x) is the two-dimensional Dirac δ function. Thus, the
Green’s function is the vertical surface displacement of the solid: G(x) = uz(z = 0). Note that δ is
defined positive in regions where the solid is vertically dilated. Except for certain limiting cases,
a simple closed-from expression for G(x) cannot be found. Its Fourier transform, however, can
be calculated analytically. We define the Fourier transform of a function in the xy plane f (x)
by f̂ (q′) = ∫

R2 f (x)e−iq′ ·xd2x and its inverse by f (x) = (2π )−2
∫
R2 f̂ (q′)eiq′ ·xd2q′, where q′ is

the wave-vector. Solving the equations of elasticity in the transformed space yields the Fourier
transform of the Green’s function [14,37]:

G̃(q′) = 1 − ν

μ q′

[
(3 − 4ν) sinh (2q′hs) − 2q′hs

(3 − 4ν) cosh (2q′hs) + 2(q′hs)2 + 5 − 12ν + 8ν2

]
, (5)

where q′ = |q′|.
The system of Eqs. (1)–(3), (5) define the coupled nonlinear fluid-solid problem. In general,

the real space Green’s function must be computed by Fourier-inverting Eq. (5), and the result
used in Eq. (4) to compute the deformation δ(x). Alternatively the convolution theorem may be
used to recast Eq. (3) as δ̃ = −p̃G̃ (requiring the Fourier transform of p) and the result inverted to
obtain δ(x). This nonlinear system can, in principle, be solved perturbatively, numerically or with
a combination of the two, and the pressure integrated over the surface of the sphere to compute
the lift force. In practice, however, the resulting integro-differential equation (see Refs. [25,29]) is
generally not analytically solvable for three-dimensional surfaces, even for small deformations.

Before developing a detailed calculation of the lift force, it is useful to estimate its dependence on
the physical parameters via a scaling analysis. The local geometry sets the characteristic horizontal
length scale 
. For layers with hs � 
, it is appropriate to using the scaling estimates q′ ∼ 1/


and q′hs = O(1) in Eq. (5), so the characteristic scale of G is 1/(2μ
) (the factor of 2 is used
here for later convenience). In the limit of small deformations, the lubrication pressure scales like
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ηvp
/h f
2. Based on Eq. (3) and the scaling in Eq. (5), the deflection of solid layer scales as δ ∼

p
/(2μ), yielding the characteristic deformation scale δc ≡ η
2vp/2μh f
2. Thus, the deformation

scale relative to the lubrication layer’s thickness is

δc

h f
= η 
2 vp

2μ h f
3 ≡ �, (6)

which could also be interpreted as dimensionless elastic compliance. In general, the elastohydrody-
namic lift force FL is a nonlinear function of �, see, e.g., [14,15]. For small � however, FL is linear
in � (or quadratic in vp; this scaling typically holds for � � 0.1) and has the characteristic scale
FL ∼ �p
2 ∼ �ηvp


3/h f
2 = v2

pη
2
5/(μh5

f ) [14,29].
We note that the response of an elastic layer also depends on its normalized thickness Hs =

hs/
 = hs/
√

2ah f . For very thin layers (hs � 
 or Hs � 1), the effective compliance (and thus the
lift force) is smaller than the estimates above by factors of Hs [32,36]. Note that Hs = hs/

√
2ah f ,

so it is practical to explore a wide range of dimensionless thicknesses Hs in a single experiment,
for example by changing the gap width h f , instead of synthesizing layers with different thicknesses
[38]. For other types of elastic substrates (e.g., thin flexible sheets), dimensionless compliances
analogous to Eq. (6) that quantify the scale of |δ|/h f can be inferred [34,35]. In all of these cases,
the lift force is predicted to scale v2

p in the limit of deformations (small vp). This is in agreement
with measurements under a wide range of experimental conditions [28–30,35]. In the remaining
sections, we will assume small deformations (� � 1) and focus solely on the leading contribution
to the elastohydrodynamic lift force.

III. THEORY FOR THE LIFT FORCE

The usual approach for calculating the lift force in the soft lubrication problems is to first
reduce the Stokes equations to the nonlinear Reynolds lubrication equation involving a pressure-
dependent displacement. For small deformations (� � 1), the resulting equation may be solved
using perturbation theory in powers of �. This procedure first involves calculating an approximation
to the deformation δ(x), which is then used to calculate the perturbation to the pressure, which
in turn is integrated to obtain the lift force. This approach has restricted analytic progress to a
handful of limiting cases where δ(x) can be obtained in closed-form (viz. thin, compressible layers
[15] and infinitely thick layers [29]) and even then the solution to the pressure perturbation may
require numerical methods [29]. These issues are further complicated in the general situation, which
additionally requires the (typically numerical) Fourier inversion of Eq. (5) to construct the Green’s
function.

A. Domain perturbation and the reciprocal theorem

Here, we use the Lorentz reciprocal theorem to circumvent these issues and make transparent the
relation between the lift force and the underlying linear response function G(x) of the material. We
follow the analyses of Refs. [34,35] for elastic sheets, but ultimately find results for the lift force
that generalize to any linear response—elastic or inelastic—of the soft material. Since the solid
deformation is small compared with the sphere-wall clearance (� � 1), we can approximate the
velocity on the deformable wall using a perturbative expansion about the undeformed wall location
Sw0 (z = 0). The left side of Eq. (1b) can be approximated as (v + δ∂v/∂z)|z=0 up to terms of O(δ2).
Rearranging yields an effective velocity condition at the undeformed wall location Sw0, which reads

v = −vp −
(

vp · ∇δ − ∂δ

∂t

)
ez − δ

∂v
∂z

+ O

(
δ2

2

∂2v
∂z2

)
on Sw0. (7)

Recall that δ ∝ �h f . Since we only focus on the leading-order lift force (linear in the deformation
amplitude) we disregard all correction terms of O(�2).
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The reciprocal theorem relates integral properties of the flow of interest (the main flow) to those
of another “model” Stokes flow. Since we are interested in the lift force on the sphere, we choose
the model flow to correspond to the translation of the same sphere perpendicular to a rigid wall with
velocity v̂p = v̂pez. The reciprocal theorem, applied to the undeformed fluid volume, states that∫

Sp+Sw0+S∞
n · σ · v̂ dS =

∫
Sp+Sw0+S∞

n · σ̂ · v dS , (8)

where n is the normal vector directed into the fluid. With the domain projection in (7), both the
model problem (σ̂, v̂) and the domain-perturbed main problem (σ, v) are Stokes flows now defined
in a domain enclosed by Sp (the sphere), Sw0 (undeformed wall) and S∞ (bounding surface at
infinity). The integral over Sp vanishes identically in a reference frame attached to the sphere.
Observing that n = ez on the undeformed wall and using v̂p = v̂p ez on Sw0 and S∞, (8) can be
written explicitly as

FL v̂p = F̂ · vp −
∫

Sw0

ez · σ̂ ·
[(

vp · ∇δ − ∂δ

∂t

)
ez + δ

∂v
∂z

+ O

(
δ2

2

∂2v
∂z2

)]
dS, (9)

where FL = ∫
Sp

n · σ · ez dS is the hydrodynamic lift force on the sphere in the main problem, F̂ =∫
Sp

n · σ̂ is the hydrodynamic force in the model problem, and vp = vpex. Equation (9) circumvents
the complexities in obtaining the detailed O(�) pressure and velocities to obtain the lift force. We
evaluate Eq. (9) in Sec. III C after first describing the model and main flow problems below.

B. Approximations to the main and model flows

To the level of approximation used in Eq. (9), it suffices to approximate ∂v/∂z with the flow due
to a sphere translating parallel to a rigid wall. This is the leading [i.e., O(�0)] approximation to force
in the full elastohydrodynamic problem at hand. The solution of both the leading-order main flow
and the model flow are well-known and are thoroughly described in the literature [39,40], so we only
discuss them briefly here. As discussed earlier, we focus on the limit of h f � a where lubrication
theory is valid, and normalize horizontal lengths by the characteristic length scale 
 = √

2ah f

and distances across the gap by the gap width h f . We define the dimensionless polar coordinates
(R, θ, Z ) such that R = r/
 and Z = z/h f with x = r cos θ and y = r sin θ , cf. Fig. 1. The sphere
profile Sp is approximated by a parabola Z = H (R) = 1 + R2, where R = 0 represents the nearest
point of the sphere to the wall.

1. Model problem

The model problem describes the motion of a sphere normal to a rigid wall in a Stokes flow. We
introduce dimensionless velocity and pressure fields

V̂r = v̂r

v̂p




h
, P̂ = p̂

p⊥
, (10)

where V̂r is the radial component of the flow velocity and p⊥ = ηv̂p 
2

h f
3 is the characteristic pressure

scale. The solutions are well known [41,42] and are given by

P̂ = − 3

2(1 + R2)2 , (11a)

V̂r = 1

2

∂P̂

∂R
Z[Z − H (R)]. (11b)
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Due to the symmetry of the flow about Z axis, the azimuthal velocity V̂θ = 0. From the equation
above we find

∂V̂r

∂Z

∣∣∣∣
Z=0

= − 3R

(1 + R2)2 . (12a)

We employ these results later in the model problem stress tensor σ̂.

2. Leading approximation to the main problem

The solution to the main problem (sphere translating parallel to a soft elastic layer) can be
expressed, in principle, in a power series in � for � � 1. As discussed in the previous section,
we are only concerned with the leading order lift force, linear in the deformation amplitude. The
reciprocal relation Eq. (21a) isolates these linear terms explicitly, so we only require the solution
to the main problem accurate to O(�0) to obtain a force accurate to O(�); cf. [32] for a formal
perturbation expansion. Physically, this leading-order solution corresponds to the parallel motion of
a sphere near a rigid wall.

We normalize the velocity and pressure of the flow with vp and p‖ = ηvp 


h f
2 , respectively, and

define the dimensionless variables

Vr = vr

vp
, Vθ = vθ

vp
, P = p

p||
. (13)

Contrary to wall-normal motion, the flow in the main problem is not axisymmetric and Vθ is nonzero.
The solution to the O(�0) main problem is well known [12], so we only report the relevant results,

P = 6R

5(1 + R2)2 cos θ, (14a)

Vr = 1

2

∂P

∂R
Z[Z − H (R)] +

(
Z

H (R)
− 1

)
cos θ, (14b)

Vθ = 1

2

1

R

∂P

∂θ
Z[Z − H (R)] −

(
Z

H (R)
− 1

)
sin θ, (14c)

valid up to terms of O(�). From the above solutions, one finds

∂Vr

∂Z

∣∣∣∣
Z=0

= 2

5

1 + 7R2

(1 + R2)2 cos θ, (15a)

∂Vθ

∂Z

∣∣∣∣
Z=0

= −2

5

sin θ

1 + R2
. (15b)

C. Evaluating the lift force integral

We now use the results of the previous section to evaluate Eq. (9). The first term at the right-hand
side of Eq. (9) vanishes since F̂L is orthogonal to vp. Using Eq. (10), the traction ez · σ̂ in Eq. (9)
can be expressed as

ez · σ̂|z=0 = ηv̂p

2

h f
3

(
−P̂ ez + h f




∂V̂r

∂Z
er

)∣∣∣∣
Z=0

. (16)

The scaling analysis of Sec. II suggests a deflection scale δc = ηvp

2/2μ h f

2, which motivates a
dimensionless deflection �(X, T) = δ(x, t)/δc, where T = tvp/
 is the rescaled time. Substituting
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this definition into Eq. (9), the general expression for the lift force is found to be

FL = −η2vp
2 
5

2μ h f
5

∫ 2π

0

∫ ∞

0

[
P̂

∂�

∂T
− P̂

(
∂�

∂R
cos θ − 1

R

∂�

∂θ
sin θ

)
+ �

∂V̂r

∂Z

∂Vr

∂Z

]∣∣∣∣
Z=0

R dR dθ.

(17)

The above expression is asymptotic to linear order in the deformation for arbitrary deformations
�(X) in the lubrication limit. Defining the dimensionless Green’s function G = 2μ
G, the defor-
mation is related to the pressure by

�(X) = −
∫
R2

P(Y)G(X − Y)d2Y. (18)

For time-dependent motion of the sphere, transients decay over the characteristic timescale 
/vp.
Below we assume that the motion of the sphere is steady, so � is time-independent in the frame of
reference attached to the sphere. This assumption is relaxed in the Sec. IV B.

In principle Eq. (18), supplemented by the appropriate Green’s function and with the results
of Sec. III B, provides all the necessary information to evaluate the lift force using Eq. (17).
However, this calculation remains difficult in practice since the Green’s function is only known
in Fourier space. Rather than trying to evaluate the real-space Green’s function, we transform the
integral Eq. (17) to Fourier space. To this end it is useful to define a dimensionless Fourier variable
q = q′
 [polar representation (q, ϕ)] and the Fourier transform of the Green’s function
G̃(q) = 2μG̃(q′)/
. Using the convolution theorem, the integral relation Eq. (18) transforms as

�̃(q) = −P̃(q) G̃(q). (19)

Next, we invoke Parseval’s integral theorem,∫
R2

f1(X) f2(X)d2X = 1

(2π )2

∫
R2

f̃1(q)[ f̃2(q)]∗d2q, (20)

where f1(X) and f2(X) are real-valued functions and the asterisk denotes the complex conjugate.
Applying Eq. (20) to Eq. (17), the steady-state lift force on the sphere can be expressed as an integral
over Fourier space as

FL = − η2vp
2 
5

8π2μ h f
5

∫ 2π

0

∫ ∞

0

⎛
⎝− ˜̂P(iq�̃ cos ϕ)∗ +

˜∂V̂r

∂Z

∂Vr

∂Z
�̃∗

⎞
⎠

∣∣∣∣∣∣
Z=0

q dq dϕ (21a)

= η2vp
2 
5

8π2μ h f
5

∫ 2π

0

∫ ∞

0

⎛
⎝i ˜̂Pq cos ϕ +

˜∂V̂r

∂Z

∂Vr

∂Z

⎞
⎠P̃∗G̃∗

∣∣∣∣∣∣
Z=0

q dq dϕ. (21b)

Here, we used the relations cos θ ∂�/∂R − R−1 sin θ ∂�/∂θ = ∂�/∂X and ˜(∂�/∂X ) = i q cos ϕ �̃,
along with Eq. (19).

Finally, we calculate (using Mathematica) the Fourier transforms of P, P̂ and ∂ V̂r
∂Z

∂Vr
∂Z

(cf. Sec. III B) to find

P̃ = −6π

5
iqK0(q) cos ϕ, (22a)

˜̂P = −3π

2
qK1(q), (22b)

˜∂V̂r

∂Z

∂Vr

∂Z
= −3π

10
iq2[qK0(q) − 5K1(q)] cos ϕ, (22c)
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where K0 is the modified Bessel function of the second kind. After substituting the above results
and using 
 = √

2ah f , Eq. (21a) yields a general expression for the steady-state force,

FL = 9 η2vp
2 a

5
2

25
√

2 μ h f
5
2

∫ ∞

0

∫ 2π

0
q5{K0(q)}2G̃∗(q) cos2 ϕ dϕ dq. (23)

The same steps allow for a similarly compact representation for the lift on a cylinder (see the
Appendix). Note that [34,35] used a similar approach to analyze the normal motion of a sphere
near an elastic sheet.

Equation (23) presents the most general form of the steady-state lift force on a rigid sphere
translating parallel to any linearly deformable substrate with a small clearance. We note that
nowhere in the development of this result have we used the specific form of G̃, so Eq. (23) applies to
any steady-state linear response of the soft material, providing a direct link between the lift force and
the substrate response. Furthermore, in most systems, including for thin elastic layers, the response
function is typically only known (indeed, derived) in Fourier space, with the real-space counterparts
being available only in limiting cases. Additionally, the kernel q5{K0(q)}2 is everywhere bounded
and decays exponentially, making integration of Eq. (23) analytically tractable and numerically
efficient for practically relevant response functions G̃. Contrast this with an approach involving
computing � directly in real space, for which the integral converges much more slowly or may even
diverge [34,43,44]. Finally, the present approach provides a powerful and convenient route to the
elastohydrodynamic lift even when the material response in anisotropic (G̃ depends on both q and ϕ),
e.g., graded materials [45,46].

IV. DISCUSSION

A. Steady state force on a sphere near a finite-thickness elastic layer

We now use Eq. (23) to analyze the lift force due to a linearly elastic layer, introduced in Sec. II.
Past work has focused on either the limits of thin or thick layers or on the limit of incompressible
materials for cylinders [14]. Here, we analyze the force for a layer of arbitrary thickness and
Poisson’s ratio. We discuss the applicability of the Winkler model (often favored for its simplicity
but becoming degenerate for incompressible materials) for nearly incompressible thin elastic layers.

For a layer of dimensionless thickness Hs = hs/
, the (dimensionless) Fourier transform G̃ =
2μG̃/
 is [see Eq. (5)]

G̃(q) = 2(1 − ν)

q

[
(3 − 4ν) sinh (2qHs) − 2qHs

(3 − 4ν) cosh (2qHs) + 2(qHs)2 + 8ν2 − 12ν + 5

]
. (24)

Substituting the above result into Eq. (23) and evaluating the ϕ integral yields

FL = 18π

25
√

2
FL0

∫ ∞

0
q4K0(q)2 (1 − ν){(3 − 4ν) sinh(2qHs) − 2qHs}

(3 − 4ν) cosh(2qHs) + 2(qHs)2 + 8ν2 − 12ν + 5
dq, (25)

where FL0 = η2vp
2

a
5
2 /(μ h f

5
2 ) is the characteristic elastohydrodynamic lift force scale. The above

integral for the lift force is evaluated numerically and the result is plotted as a function of Hs for
various values of Poisson’s ratio in Fig. 2(a). As one may observe, by increasing the thickness, the
lift force converges to a finite value corresponding to an infinitely thick layer.

By replacing the general Green’s function in Eq. (23) with its infinite-thickness limit
[G̃(Hs → ∞) = 2(1 − ν)/q], the limiting value of the lift force is found to be

FL(Hs → ∞) = η2vp
2 a

5
2

μ h f
5
2

243 π3

6400
√

2
(1 − ν). (26)

For an incompressible material (ν = 1/2), the dimensionless lift force FL/FL0 reduces to 243π3

12800
√

2



0.416, which is the prefactor found in Zhang et al. [29] from a numerical solution of the O(�)
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FIG. 2. (a) Normalized lift force versus normalized layer’s depth for various Poisson’s ratios; FL0 =
η2vp

2a
5
2 /(μhf

5
2 ). The dashed lines show the thick-layer approximation given by Eq. (26). (b) Normalized

lift force versus normalized thickness for thin layers. The markers represent the exact result obtained from
Eq. (26) while the solid lines show the small-Hs approximation Eq. (27), retaining up to cubic terms.

perturbation of the elastohydrodynamic Reynolds lubrication equation. Taylor expansion of the
general expression Eq. (26) for large Hs shows that the next term is O[(log Hs)2H−5

s ]. The curves
converge relatively quickly to their Hs → ∞ limits, as shown in Fig. 2(a). The infinitely-thick-layer
asymptote is accurate to within 0.2% at Hs = 5 and within 10% with Hs = 2.25 for the case of
ν = 0.5. For other values of Poisson’s ratio, the error is of the same order of magnitude.

For thin layers (Hs � 1), we Taylor expand Eq. (26) about Hs = 0 and evaluate the integral. By
extracting the first three terms, we obtain the following asymptotic behavior

FL = η2vp
2 a

5
2

μ h f
5
2

24
√

2π

125

[
1 − 2ν

1 − ν
Hs + 18ν(4ν − 1)

7(1 − ν)2
Hs

3

− 64(3 − 30ν + 76ν2 + 16ν3)

35(1 − ν)3
H5

s + O
(
H7

s

)]
. (27)

As depicted in Fig. 2(b), the two-term Taylor series expansion represents the exact result with
good accuracy for Hs � 0.1 for ν close to 0.5 although the range of accuracy of the expansion
is extended for smaller values of ν. Including terms of O(H5

s ) and higher yields only a slight
improvement in accuracy. For Hs � 1, the linear term dominates for almost all values of ν. Writing
ν in this equation in terms of Lamé’s constants (μ and λ) and retaining just the O(Hs) term leads
to FL = (48

√
2π η2vp

2a
5
2 H
)/(125(2μ + λ)h f

5
2 ), in agreement with the result of Urzay et al. [15],

obtained using a Winkler model for the solid. Thus, the limiting values of forces for both thin [15]
and thick [29] layers are obtained within a single consistent formalism.

While the Winkler model typically produces a good approximation of the force for thin layers,
it admits no deformation and therefore no lift force for a strictly incompressible solid. As shown by
Eq. (27), at ν = 1/2 representing a perfectly incompressible solid, the term linear in Hs vanishes and
leaves behind FL ∝ Hs

3. This cubic scaling of the force is a signature of an incompressible response
of the material [14]. However, in practice, soft materials are only approximately incompressible,
so it relevant to quantify the crossover between compressible (FL ∝ Hs) and incompressible (FL ∝
Hs

3) behaviors to assess the relative importance of each. This crossover is shown in Fig. 3: for
small values of Hs, the linear scaling is observed except for the degenerate case of ν = 1/2, where
the leading term scales as H3

s . As one may observe in Fig. 3, for each Poisson’s ratio, there is a
characteristic thickness across which the cubic and linear terms intersect. By comparing the first
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FIG. 3. The normalized lift force versus normalized thickness for different Poisson’s ratios. FL0 = η2vp
2a

5
2 /

(μhf
5
2 ). The solid lines are results from the full theory, while dashed lines are leading-order approximations

for small thickness.

two terms in Eq. (27), this crossover thickness is found to be Hc
s =

√
7

18

√
2ν2−3ν+1√

4ν2−ν
which, for ν

close to 1/2, behaves as Hc
s ∼ √

7/9(1/2 − ν)1/2.
This behavior is understood by recognizing there are two separate modes of deformation of the

elastic layer: compression and shear. For a thin layer, these two effects scale differently with the
layer thickness Hs: In Eq. (27), the linear term represents the compression mechanism and the cubic
term represents the shear. For thin compressible materials, compression dominates for small Hs. In
fully incompressible materials (ν = 1/2), however, shear is the only mode of deformation. Thus,
for nearly incompressible materials (1/2 − ν � 1), compressive effects are weak and compete with
shear when Hs 
 (1/2 − ν)1/2 (see Ref. [36] for a detailed discussion).

From this simple estimate, one may expect the linear scaling to hold when Hs � Hc
s ; this is

indeed the case as evidenced by Fig. 3. Contrarily, one might expect the incompressible scaling
to become relevant if Hs � Hc

s , provided that the layer is still thin. While this is true, the small-
thickness asymptotics are found to be ineffective as an approximation for Eq. (25) for layers thicker
than Hs � 0.12 for ν 
 1/2 (cf. Fig. 3). Thus, any H3

s scaling behavior of the force would only be
observable only in a very narrow range of Hs given by

√
7

3

(
1

2
− ν

)1/2

� Hs � 0.12. (28)

For ν = 0.495, the lower bound is about 0.063 so even for this “nearly incompressible” value of ν,
the condition Eq. (28) is extremely restrictive. Indeed, as can be seen in Fig. 3, the incompressible
scaling FL ∝ H3

s is not observable even with ν as large as 0.495. For ν = 0.499 (not plotted) there
is an barely identifiable range of Hs where FL ∝ H3

s . These behaviors may be rationalized from the
Green’s function for the elastic layer (see [10]), albeit modulated here via the integral Eq. (25).
This is consistent with the results of Chandler and Vella [36] for cylindrical contacts (see also the
Appendix).

To summarize, even when ν is very near to 0.5, the Winkler model accurately predicts the force
(FL ∝ Hs) for a thin enough layer (Hs � Hc

s ≈ √
1/2 − ν). Up to ν ≈ 0.495, the Winkler approxi-

mation holds when Hs � 0.1. For each ν � 1/2 and for Hs �
√

1/2 − ν, there is a transition region
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FIG. 4. Phase diagram on the Hs-ν plane indicating the qualitative behavior of the lift force in different
regions. The thin-layer approximation for the force Eq. (27) is typically applicable for H � 0.12. The
incompressible scaling FL ∝ H 3

s is only realized in a narrow range of Poisson ratio 1/2 � ν < 0.495 with
(1/2 − ν )1/2 � Hs � 0.12. The Winkler approximation is effective for H � (1/2 − ν )1/2 for ν close to 1/2.
The thick layer approximation is accurate for H � 3.

where the behavior of FL is a combination of linear and cubic powers of Hs. Beyond this region
(Hs � √

1/2 − ν) the layer may behave like a fully incompressible solid in principle although
this behavior is quickly suppressed by higher order terms for Hs � 0.12. Thus, the incompressible
FL ∝ H3

s scaling is only applicable in a limited range of Poisson’s ratio 0.495 � ν � 1/2 over a
limited range of layer thickness

√
1/2 − ν � Hs � 0.12; this is far more restrictive is suggested by

the value of the Poisson ratio’s alone. The thin-layer approximations appear valid for H � 0.12 for
ν close to 1/2. Beyond this value, the full integral Eq. (25) is necessary to obtain a quantitatively
accurate prediction. We summarize the different lift force approximations and their regions of
validity in Fig. 4. This serves as a qualitative guide to choose an approximation for the force based
on the normalized layer’s thickness Hs and Poisson’s ratio ν.

The above results for thin and thick layers are in agreement with the available experimental
results in the literature. The result Eq. (26) agrees with the data of Ref. [29], which measure the
force on a sphere translating past a thick elastic layer (Hs � 1). For thin layers, our results for
a cylinder [see Appendix, Eq. (A8)] nearby a nearly incompressible layer (ν ∼ 0.49) are in good
agreement with the experiments of Ref. [28] for small to intermediate values of Hs.

B. Oscillatory excitation and the effects of viscoelasticity

The results of the previous section assumed that the behavior of the fluid and the solid are both
time-independent. However, this may not always be the case in experiments. Recent experimental
work by Ref. [29] drove tangential oscillations of sphere (attached to an atomic force microscope
tip) next to a thick elastomeric layer and measured the cycle-average lift force on the sphere
resulting from this oscillatory driving. In these particular experiments, the measured average lift
force was found to be consistent with a strictly elastic model of the substrate. However, it may be
important to account for a finite relaxation time of the solid response for more general soft materials,
particularly when the oscillation frequency is close to an inverse relaxation timescale of the material.
In the following, we apply the framework developed here to oscillatory motion, accounting for a
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general linear viscoelastic response of the solid. As we show below, the measured lift force contains
contributions from both the storage and loss moduli of the substrate.

We focus on the situation in which the sphere oscillates with a small amplitude at a single
frequency ω with a peak speed vp0 along the x direction. We set the origin of time t such that
the position and velocity of the sphere are

xp(t ) = vp0

ω0
sin ω0t, (29a)

vp(t ) = vp0 cos ω0t = vp0 Re j{exp ( jω0t )}. (29b)

Note that j is the imaginary unit in the complex time space (Re j identifies the real part of a function
in the j complex plane) and is distinct from the imaginary unit i used to characterize spatial Fourier
modes in the foregoing analysis. We will neglect inertial effects as before, although we note that
oscillatory inertia may produce additional forces. Neglecting transients from the start-up of the
motion, the (leading-order) pressure and velocity fields are also harmonic,

p(x, t ) = p0(x) Re j{exp ( jω0t )}, v(x, t ) = v0(x) Re j{exp ( jω0t )}, (30)

up to correction terms of O(�). It is important to note that p and v are in phase with vp since
the leading-order pressure is governed by the (quasistatic) Stokes equations with rigid boundaries
(i.e., p0(x) and v0(x) are real functions with respect to j).

Assuming that the oscillating leading-order pressure elicits a linear response as before, we can
write the spatially Fourier transformed surface displacement of the substrate as

δ̃(q′, t ) = Re j{−p̃0(q′)G̃(q′, ω0) exp ( jω0t )}. (31)

Here, G(x, ω0) is the complex (in the j plane) oscillatory viscoelastic response function of the
material (corresponding to an oscillating normal point force) and G̃(q′, ω0) is its spatial Fourier
transform. Equation (31) is the dimensional equivalent of Eq. (19) for oscillatory forcing.

We now introduce the dimensionless frequency parameter ω = ω0
/vp0 and rescale variables as
before, using vp0 and ηvp0
/h2

f to scale velocities and pressure in the main problem. The solution
to the model problem is unchanged from before, and still corresponds to the steady motion of a
sphere away from a rigid wall. The flow fields of the main problem under oscillatory driving are
formed by modulating their steady counterparts with a temporal oscillation, making use of the
fact that the leading-order flow oscillates in phase with the particle. For example, the pressure in
the main problem is P(R, θ ) cos ωT ; similarly, the velocity field is a cos ωT modulated version
of Eqs. (14b) and (14c). In general, the effective shear modulus of a viscoelastic material is
frequency dependent, so we introduce the zero-frequency shear modulus scale μ0 and use it to
define the dimensionless complex response function G = 2|μ0|
G and its spatial Fourier transform
G̃ = 2|μ0|G̃/
. In dimensionless variables, �̃(q, T ) = Re j{−P̃(q)G̃(q, ω) exp ( jωT )}.

To analyze the lift force, we start with Eq. (17), but with vp replaced by vp0, which is valid for
time-dependent motion. We follow the same steps as before and recast Eq. (17) as an integral over
the dimensionless Fourier variable q. We now retain the time-derivative term in Eq. (17) and keep
track of the time-dependence explicitly to obtain the analog to Eq. (21a),

FL = η2vp0
2 
5

8π2|μ0| h f
5

⎛
⎝ ∫ 2π

0

∫ ∞

0
Re j

{
jω ˜̂PP̃∗[G̃(q, ω0)]∗ exp ( jωT )

}∣∣∣∣
Z=0

q dq dϕ

+
∫ 2π

0

∫ ∞

0
Re j

⎡
⎣

⎛
⎝i ˜̂Pq cos ϕ +

˜∂V̂r

∂Z

∂Vr

∂Z

⎞
⎠

× cos(ωT ) P̃∗{G̃(q, ω0)}∗ exp ( jωT )

⎤
⎦

∣∣∣∣∣∣
Z=0

q dq dϕ

⎞
⎠, (32)
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where the asterisk denotes the complex conjugate in the i plane as before. The first integral term
results from the time-derivative of the deformation field in Eq. (17), while the second integral is the
same as in Eq. (21a) except for the time dependences, with the cos(ωT ) being contributed by the
main-problem fields in Eq. (17) and the complex exponential being contributed by �̃, cf. Eq. (31).

The complex response G̃ is written in terms of its real and imaginary parts as

G̃(q, ω) = G̃ ′(q, ω) + jG̃ ′′(q, ω), (33)

where G̃ ′ and G̃ ′′ are, respectively, spatial Fourier transforms of the storage and loss responses of the
material. Note that the G̃ characterizes the elastic deformation, so G̃ ′ and G̃ ′′ are related to the real
and imaginary parts, respectively of the (frequency-dependent) reciprocal complex shear modulus
1/μ(ω). The Poisson’s ratio may also be frequency-dependent in principle, although we neglect this
dependence here. Substituting the results Eq. (22) into Eq. (32) and simplifying leads to

FL = 9 η2vp
2 a

5
2

25
√

2 |μ0| h f
5
2

∫ ∞

0

∫ 2π

0

{
5iω q3K0(q)K1(q)

[
G̃ ′(q, ω) sin(ωT ) + G̃ ′′(q, ω) cos(ωT )

]∗
cos ϕ

+ 1

2
q5[K0(q)]2

[
G̃ ′(q, ω)

]∗
cos2 ϕ + 1

2
q5[K0(q)]2

[
G̃ ′(q, ω) cos(2ωT )

− G̃ ′′(q, ω) sin(2ωT )
]∗

cos2 ϕ

}
dϕ dq. (34)

The above result yields the lift force at linear order in � for oscillatory translation of a sphere parallel
to a linear viscoelastic substrate, and is the oscillatory analog of (23). Note that setting ω = 0 above
recovers the steady-state result. Note again that the above result applies to any substrate whose
deformation is linearly related to the applied normal stresses through a Green’s function G̃(q, ω).

In general, the lift force comprises a superposition of a steady component, contributions oscillat-
ing at the driving frequency ω and contributions oscillating at 2ω. The mean force over an oscillation
cycle is

〈FL〉 = 9 η2vp
2 a

5
2

25
√

2 |μ0| h f
5
2

∫ ∞

0

∫ 2π

0

1

2
q5{K0(q)}2

{
G̃ ′(q, ω)

}∗
cos2 ϕ dϕ dq. (35)

Note the similarity with Eq. (23), except for a factor of 1/2 arising from the averaging over the
cycle. Thus, the mean lift force corresponds to using the elastic (storage) response of the material G̃ ′
at the driving frequency, utilizing the steady-state result Eq. (23) quasi-statically at each point in the
oscillation cycle, and then averaging over the oscillation cycle. Indeed, this quasi-static assumption
was employed by Ref. [29] for a strictly elastic model; Eq. (35) shows that this approach is also
valid for a viscoelastic response irrespective of the relaxation timescale of the solid relative to the
driving frequency.

While the mean lift force only depends on the storage response G̃ ′, oscillating components of the
force depend on both the storage and loss response functions. Terms oscillating at frequency ω are
only nonzero if the response of the solid has an asymmetric component in the direction of translation
(caused, for example, by a gradient of mechanical properties). Thus, for most typical materials with
symmetric stress responses, a force component at frequency ω is not expected to be generated. The
contribution to the force oscillating with twice the driving frequency is

F (2ω)
L = 9 η2vp0

2 a
5
2

25
√

2 |μ0| h f
5
2

∫ ∞

0

∫ 2π

0

1

2
q5{K0(q)}2{G̃ ′(q, ω) cos(2ωT )

− G̃ ′′(q, ω) sin(2ωT )}∗ cos2 ϕ dϕ dq. (36)

The part of this force component that oscillates as cos(2ωT ) is in phase with vp(t )2 ∝ cos2(ωT )
and depends on the storage response G̃ ′, whereas the component oscillating as sin(2ωT ) is 90
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FIG. 5. (a) The real and imaginary part of normalized reciprocal complex modulus for standard linear solid
model. (b) Rescaled viscoelastic lift force (thick curve) FL/FLe over one period; FLe = 243 π 3η2vp0

2 a
5
2 (1 − ν )/

(|μ0| hf
5
2 6400

√
2) is the zero-frequency limit of Eq. (37). The dashed line indicates the mean over the cycle

and the thin curve is the elastic part of the response, in phase with vp(t )2. We use c = 10 in both plots and
ωγ = 2 in (b).

degrees out of phase with vp(t )2 and depends on the loss response G̃ ′′. Thus, amplitude and phase
information of the 2ω frequency component of FL can be used to infer the complex viscoelastic
modulus of the substrate.

As a concrete example, we apply the result Eq. (36) to a viscoelastic layer. For simplicity, we
focus on the limit of a thick layer and consider the shear modulus to be a complex frequency-
dependent function μ(ω) as is typical in linear viscoelasticity. Then, the time-dependent lift force
for oscillatory forcing in this case is

FL = η2vp0
2 a

5
2

|μ0| h f
5
2

243 π3(1 − ν)

12800
√

2

{
Re j

[ |μ0|
μ(ω)

]
+ Re j

[ |μ0|
μ(ω)

]
cos(2ωT ) − Im j

[ |μ0|
μ(ω)

]
sin(2ωT )

}
,

(37)

where we have assumed that ν is frequency-independent and μ0 = μ(ω = 0) is the zero-frequency
shear modulus by definition. Note that the lift force does not contain terms at frequency ω due to
the isotropy of the response function. From Eq. (37), we find that the amplitude of the oscillating
component of the force exceeds the magnitude of the mean force by a multiplicative factor
{1 + (Im j{μ}/Re j{μ})2}1/2

. Thus, a positive lift force throughout the oscillation cycle indicates
a purely elastic response, whereas a negative lift force (i.e., attraction) during a part of the cycle
signals a viscous response from the material. Note that the mean lift force is always positive.

To illustrate these predictions, we evaluate Eq. (37) for a specific rheological model of the
substrate. A simple and practically relevant viscoelastic model for soft solids is the standard linear
solid (SLS; or Zener) model. This model represents the resistance of the solid by a spring and
damper in parallel, connected in series to another spring. The complex shear modulus for this model
is (see Ref. [17])

μ(ω)

|μ0| = (ωγ )2 + c2 + c(ωγ )2

(ωγ )2 + c2
+ j

c2(ωγ )

(ωγ )2 + c2
, (38)

where c is the ratio between the two spring stiffnesses in the model (see Ref. [17] for more
details) and γ = τsvp0/
 is the ratio of viscoelastic relaxation time constant τs of the material
to the time scale of advection. We utilize this model to evaluate the real and imaginary parts of
normalized reciprocal complex modulus [Fig. 5(a)] and the total lift force described by Eq. (37)
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for a specific value of stiffness ratio c = 10. As shown in Fig. 5(b) at a frequency ωγ = 2, the
rescaled force FL/FLe oscillates about a mean of 1

2 Re j{μ0/μ(ω)} with frequency 2ω, where FLe is
the zero-frequency limit of Eq. (37). The amplitude of force oscillations exceeds the mean force,
which is a signature of a viscoelastic material response.

The general result Eq. (34) and its more specific application Eq. (37) suggest opportunities
for noncontact microrheometry of soft materials through lift force measurements. Isolating and
analyzing the different temporal frequency components of the FL(t ) response can provide insights
into the frequency-dependent viscoelastic material response. For example, it is expected that an
experiment such as that of Zhang et al. [29] with an oscillatory driving yields a measurable
time-dependent lift force FL(t ). At any given driving frequency ω, the components of FL(t ) in
phase with cos(2ωT ) and sin(2ωT ) yield the real and imaginary parts of 1/μ(ω), respectively,
as given by Eq. (37). Thus, repeating this experiment at different frequencies ω would enable a
reconstruction of the complex modulus μ(ω) over a range of frequencies, thus characterizing the
visoelastic material response. Equation (34) [Eq. (23) for the steady case] may also be useful to
characterize the spatial frequency spectrum of a soft material with an unknown response function
G̃(q, ω). We note that the material response is probed on the characteristic length scale 
 = √

2ah f

set by the lubrication geometry, ultimately leading to the lift force. Measuring FL at different gap
widths h f (other geometric and physical parameters kept constant), Eq. (23) yields a set of integral
equations relating FL and the (unknown) response function G̃(q), where we drop the ω dependence
for clarity. Solving these relations for G̃(q) may provide insights into the material response at spatial
frequencies |q| ∼ 
−1 = (2ah f )−1/2. We note, however, that the robustness of inverting the integral
relations Eq. (34) subject to experimental uncertainties is nontrivial and warrants a more careful
study.

Finally, we remark that although the calculation in this section has focused on harmonic driving,
the result Eq. (17) is general and, with a combination of spatial and temporal transforms, can be
used to calculate the lift force in more general time dependent situations. Such a calculation would,
in general, involve an integral over all temporal frequency components and is not detailed here; see
Ref. [17] for a detailed analysis of the start-up of motion using the direct perturbation solution of
the Reynolds equation.

V. CONCLUSIONS

We have introduced a general theoretical framework to calculate the lift force on a locally
spherical surface moving parallel to soft substrate separated by a lubricating liquid film. The
application of the Lorentz reciprocal theorem and a transformation to Fourier space yields a compact
relation between the lift force and the linear response function (i.e., the Green’s function) of the
substrate. The upshot of this formalism is that it applies to an arbitrary soft material that exhibits a
linear stress-displacement response for small applied stresses.

Applying this general formulation to a linearly elastic layer of finite thickness, we studied the
behavior of lift force as a function of the thickness and Poisson’s ratio of the layer. Our results reveal
a compact analytic result for all layer thicknesses and material compressibilities, while recovering
the results of previous experimental and theoretical work for thick and thin elastic layers. For thin
layers, we find a transition of the force between the results of a Winkler model dominated by
compression and incompressible thin-layer theory dominated by internal shearing of the material.

Finally, we generalized the theory for linear elastic materials to linear viscoelastic materials. For
oscillatory relative motion between the surfaces, we obtain a time-dependent lift force and find that
different temporal Fourier components of the force are controlled by either the elastic or viscous
parts of the substrate response. For steady and time-periodic motion, the framework developed here
yields the general results Eqs. (23) and (34), respectively, for the lift force.

Thus, the framework provides a powerful and versatile tool to directly compute lift forces in
situations involving elastohydrodynamic lubrication. We anticipate that the methods developed
here and the specific results will be useful to characterize forces on objects interacting with soft
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materials and deformable interfaces at the microscale. The formalism may also provide insights
into the mechanical properties of soft materials via measurements of lift forces in contactless
micro-rheometry experiments at different frequencies and gap widths. Understanding the robustness
of such an approach to experimental uncertainties requires a detailed study and is a potential topic
for future research.
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APPENDIX: LIFT FORCE ON A CYLINDER MOVING PARALLEL TO A SOFT SUBSTRATE

Here, we employ the approach of the main text to find the lift force on a cylinder moving parallel
to a nearby soft wall. While the direct perturbation approach is more analytically tractable for
cylinders, at least for a thin or thick elastic layers, the formulation here offers a convenient route to
the lift force for general material responses. The formulation for a cylinder, starting with Eq. (9), is
similar as before and requires solutions to the main and model problems. In the model problem, a
cylinder moves normal to a rigid wall (v̂p = v̂p ez ). Again, Eq. (10) can be employed to normalize
the relations except that R is replaced by X = x/
. The relevant results for the model problem are

P̂ = − 3

(1 + X 2)2 , (A1a)

∂V̂x

∂Z

∣∣∣∣
Z=0

= − 6X

(1 + X 2)2 . (A1b)

The main problem describes the motion of a cylinder with the velocity vp = vp ex. After normaliza-
tion as in Eq. (13), one finds

P = 2X

(1 + X 2)2 , (A2a)

∂Vx

∂Z

∣∣∣∣
Z=0

= 4X 2

(1 + X 2)2 . (A2b)

Both main and model problems are well-known in the literature (see, e.g., [14]). After substituting
the relevant results into Eq. (9) and we obtain the lift force per length of the cylinder

FL = −η2vp
2 
4

2μ h f
5

∫ ∞

−∞

[
P̂

∂�

∂T
− P̂

(
∂�

∂X

)
+ �

∂V̂x

∂Z

∂Vx

∂Z

]∣∣∣∣
Z=0

dX . (A3)

We introduce a one-dimensional dimensionless Fourier variable qx ∈ (−∞,∞) dual to X . Note that
this is related to the polar Fourier variable introduced in the main text as qx = q cos ϕ. Parseval’s
theorem lets us cast Eq. (A3) as an integral in Fourier space. At steady state,

FL = 2η2vp
2a2

μh f
3

∫ ∞

−∞

⎛
⎝iq ˜̂P +

˜∂V̂x

∂Z

∂Vx

∂Z

⎞
⎠(

G̃ P̃
)∗

∣∣∣∣∣∣
Z=0

dqx

2π
. (A4)

Here, G̃(qx ) is the transformed response function and yields the transformed displacement via
�̃(qx ) = G̃(qx )P̃(qx ). Evaluating the Fourier transforms of the result Eqs. (A1) and (A2) and
substituting them into Eq. (A4) yields the general steady-state result for a cylinder

FL = πη2vp
2 a2

2μ h f
3

∫ ∞

−∞
e−2|qx | qx

4 G̃∗(qx ) dqx. (A5)
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FIG. 6. (a) Normalized lift force versus normalized layer’s depth for various Poisson’s ratios; FL0 =
η2vp

2a2/(μhf
3) is the characteristic scale of the lift force per length. the dashed lines show the infinity

approximation by Eq. (A7). (b) Normalized lift force versus normalized thickness for thin layers limit. The
markers represent the main function while the solid lines show the thin-layer approximation up to terms of
O(H 3

s ).

For an elastic layer, the transformed Green’s function G̃ is obtained from Eq. (24) with some
minor modifications involving the change from polar to one-dimensional Cartesian geometry.
In particular, noting that the polar Fourier variable q = √

qx
2 + qy

2 and setting qy = 0 (because
the cylinder problem is two-dimensional), the Green’s function relevant to the cylinder problem
corresponds to a solid layer with line loading and is given by

G̃(qx ) = 2(1 − ν)

|qx|
[

(3 − 4ν) sinh (2|qx|Hs) − 2|qx|Hs

(3 − 4ν) cosh (2|qx|Hs) + 2(|qx|Hs)2 + 5 − 12ν + 8ν2

]
, (A6)

where |qx| is the absolute value of the one-dimensional Fourier parameter.
Substituting Eqs. (A6) into (A5) and integrating yields the lift force on a cylinder for a layer with

an arbitrary thickness and Poisson’s ratio. In Fig. 6(a), the force is plotted for several values of these
two parameters. The results for the cylinder are qualitatively similar to those for the sphere, with
only some minor quantitative differences.

In the case of an infinitely thick layer, the lift force reduces to

FL(Hs → ∞) = η2vp
2 a2

μ h f
3

3π (1 − ν)

4
, (A7)

in agreement with Ref. [14]. As one can observe in Fig. 6(a), the lift force converges to the infinite-
thickness limit relatively quickly and a layer with the thickness of Hs = 5

√
h f a could be considered

effectively infinite with good accuracy. In the thin-layers regime (Hs � 1), using Taylor’s series
expansion of G̃, we lift force has the asymptotic behavior

FL = η2vp
2 a2

μ h f
3

3π

4

[
1 − 2ν

1 − ν
Hs + 5ν(4ν − 1)

2(1 − ν)2
Hs

3 + O
(
Hs

5
)]

. (A8)

The linear term in Eq. (A8) reproduces the result of using the Winkler approximation [13].
Figure 6(b) compares the behavior of Taylor series expansion (A8) and the main function. As
with the sphere, for Hs < 0.1, the approximation describes the exact result with good accuracy.
The transition between compressible and incompressible scaling behaviors is depicted in Fig. 7

(compare with Fig. 3). For the cylinder, the crossover thickness is found to be Hc =
√

2
5

√
2ν2−3ν+1√
4ν2−ν

∼√
4/5 (1/2 − ν)1/2 (see also Ref. [36]). As with the sphere, the Winkler model provides a good

034003-18



LIFT FORCES ON THREE-DIMENSIONAL ELASTIC …

10
-3

10
-2

10
-1

10
0

10
-4

10
-2

10
0

=0.5 =0.495 

=0.49 

=0.48 

=0.45 
=0.4 

FIG. 7. The normalized lift force versus normalized thickness for different Poisson’s ratios. Here,
FL0 = η2vp

2a2/(μhf
3) is the characteristic scale of the lift force per length. The solid lines are the exact results

while the dashed lines are one-term approximations for thin layers.

representation of the force for thin layers except in an extremely narrow range of Hs for materials
with 1/2 − ν � 10−3.
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