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Diffusiophoresis and diffusioosmosis are electrokinetic phenomena where relative
motion is induced between a charged surface and a surrounding electrolyte due to a
concentration gradient of ions. In the literature, a relative velocity between a surface
and the electrolyte has been derived for a valence-symmetric (z:z) electrolyte. In this
article, we reformulate the governing equations in a convenient form based on a systematic
generalization of the nonlinear Poisson-Boltzmann equations in the limit of a thin double
layer, which allows us to derive results for diffusiophoretic and diffusioosmotic velocities
for a mixture of electrolytes with a general combination of cation and anion valences.
We find that the relative motion depends significantly on ion valences. We also provide
analytical approximations for the diffusiophoretic and diffusioosmotic velocities and
discuss their accuracy and applicability. Further, we tabulate diffusiphoretic velocities
for some common cases, which highlights the importance of asymmetry in cation and
anion valences. Finally, we discuss the validity of our assumptions and the importance
of effects such as finite ion size, dielectric decrement, and surface conduction for typical
experimental conditions.
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I. INTRODUCTION

Several physical scenarios involve an electrolyte in the vicinity of a charged surface, such as
(1) charging and discharging of double layers, which is the underlying process in electrochemical
capacitors [1,2], (2) electrophoresis and electroosmosis, which are electrokinetic phenomena where
relative motion is induced between the surface and the electrolyte due to the application of an
external electric field [3–5], and (3) diffusiophoresis and diffusioosmosis, which are electrokinetic
phenomena where relative motion is induced between the surface and the electrolyte due to a
concentration gradient of ions [5,6]. In this article, we focus on diffusiophoresis and diffusioos-
mosis, which are observed in processes such as dialysis [7], sedimentation and centrifugation [8],
and the motion of colloidal particles in microchannels [9–16]. Moreover, reports in the literature
have utilized diffusiophoresis and diffusioosmosis for applications in water treatment [10], fabric
cleaning [17], self-propelling “active” swimmers [18–20], and measurement of the surface zeta
potential [21], among others.

Diffusiophoresis is defined as the movement of a charged particle while the surrounding
electrolyte is stationary. In contrast, diffusioosmosis occurs when the electrolyte is moving while the
surface is stationary. In their classical work, Prieve, Anderson, and others derived an expression for
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the relative velocity for a valence-symmetric electrolyte, or a z:z electrolyte, such as NaCl (z = 1)
and CaSO4 (z = 2) [5,6,22]. They showed that the diffusiophoretic (or diffusioosmotic) velocity
is the sum of an electrophoretic component and a chemiphoretic component. In their derivation,
a restriction is not imposed on the potential drop across the double layer or zeta potential ψD.
However, their analyses require knowledge of the potential variation inside the double layer, first
derived by Gouy for a z:z electrolyte [23], to arrive at the expression for the diffusiophoretic
velocity. Though there has been an increase in interest to derive results for a mixture of electrolytes
with a general combination of cation and anion valences [24–26], a complete solution of the
potential inside the double layer is not readily available for a mixture of valence-asymmetric
electrolytes. Some authors report an expression for a particle’s diffusiophoretic velocity in a mixture
of electrolytes where the potential distribution can be evaluated [24,27], although their results are
valid only in the Debye-Hückel limit of �D = e|ψD|

kBT � 1, where �D is the dimensionless zeta
potential, e is the charge on an electron, kB is the Boltzmann constant, and T is the temperature.
However, typical experiments include |ψD| � 100 mV or |�D| � 4 [21]. Therefore, it is necessary
to go beyond the limit of |�D| � 1.

Recently we demonstrated that unequal cation and anion valences influence diffuse-charge
relations for an electrolyte near a charged surface [26]. Here we extend the analysis to calculate
the diffusiophoretic and diffusioosmotic velocities. First, we reformulate the classical derivation of
the diffusiophoretic velocity and show, perhaps surprisingly, that the detailed profile of the electric
potential within the double layer is not necessary to determine the diffusiophoretic velocity. We
derive velocities for a general mixture of ions with valence zi, without imposing any restriction
on ψD, in the limit of thin double layers. We show that the relative velocity can be significantly
influenced by the valence zi. Our results are in agreement with those previously reported in
the Debye-Hückel limit [24,27], and we also report simplified expressions valid for large zeta
potentials. For the case of a single electrolyte with the same valence, we recover the original solution
highlighting the generality of our approach.

We derive our main results in the limit of thin double layers and do not consider effects
such as finite ion size [26,28,29], dielectric decrement [26,30,31] and surface conduction [32–34].
Therefore, we discuss experimental conditions where our analysis is applicable and detail scenarios
where the inclusion of the aforementioned effects should be considered.

II. PHYSICAL ORIGIN OF DIFFUSIOPHORESIS AND DIFFUSIOOSMOSIS

We first summarize the physical mechanism that gives rise to diffusiophoresis and diffusioos-
mosis. For convenience, we describe only the mechanism of diffusioosmosis. A schematic of
diffusioosmosis is provided in Fig. 1 where a mixture of electrolytes is in contact with a charged
surface. The valence of an ith ion is denoted as zi. Diffusioosmotic motion of the electrolyte is
produced when a gradient in ion concentration is present far away from the surface, or ci∞(x) (a
more rigorous definition of ci∞(x) is provided in the next section). Depending on the charge of
the surface, either cations or anions are attracted towards the surface, and the concentration of the
attracted ion increases significantly near the wall. The length scale of this diffuse-charge region is
given by the Debye length, λD. Most studies assume a single electrolyte with equal valences of
cations and anions, while we focus on the general case of a mixture of multiple electrolytes with
arbitrary zi.

The diffusioosmotic velocity is commonly described as the sum of an electrophoretic component
and a chemiphoretic component. We first focus on the electrophoretic component. Due to a gradient
in the electrolyte concentration far away from the surface, ions diffuse towards the region of low
concentration. However, different mobilities of cations and anions give rise to an electric field to
maintain a zero flux of net charge. Since the double layer has a net charge, this electric field creates
an electrostatic force inside the double layer. Therefore, the fluid far away from the surface moves
so as to generate the shear forces in the double layer that balance the electrostatic forces, similar
to an electrophoretic system. In contrast, chemiphoretic movement of the fluid far away from the
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FIG. 1. Sketch and notation for the derivation of the diffusioosmotic velocity. The valence of the ith ion
is denoted as zi, where zi > 0 for a cation and zi < 0 for an anion, here illustrated in shorthand by ⊕ and
�, respectively. The concentration gradient of ions in the x direction induces a relative motion between the
electrolyte and the surface. The surface charge density is assumed to be constant and is denoted as q (the
schematic shows the scenario of q > 0).

surface generates shear forces inside the double layer that balance the pressure forces inside the
double layer, which arise due to variation in electrical force along the x direction. Depending on
the charge at the surface and the relative diffusivities of cations and anions, the electrophoretic and
chemiphoretic components can be either in the same direction or in the opposite direction.

III. ANALYSIS OF A GENERAL MIXTURE OF ELECTROLYTES

A. Governing equations

We assume that the liquid far away from the stationary surface in Fig. 1 contains multiple ions
where zi > 0 for a cation and zi < 0 for an anion. Here x denotes the coordinate along the surface
and y is normal to the surface. The surface charge density q is assumed to be constant and is related to
the potential drop across the double layer, denoted here as ψD (Fig. 1). The incompressible fluid flow
is governed by the Stokes equations with an electrostatic body force, Gauss’s law of electrostatics,
and the Nernst-Planck equations for the flux of ions. We define u = ux(x, y)ex + uy(x, y)ey as the
velocity field, p(x, y) as pressure, μ as the fluid viscosity, ρe(x, y) = e

∑
i zici as the charge density,

ψ (x, y) as the electrical potential, ci(x, y) as the concentrations of the ith ion, ji = jix(x, y)ex +
jiy(x, y)ey as the fluxes of the ith ion, and Di as the diffusivity of the ith ion. Then the governing
equations are

∇ · u = 0, (1a)

−∇p + μ∇2u − ρe∇ψ = 0, (1b)

−∇ · (ε∇ψ ) = ρe = e
∑

i

zici, (1c)

∇ · ji = 0, (1d)

ji = −Di∇ci + uci − Dizieci

kBT
∇ψ. (1e)

In the description used above, the electrical permittivity ε is assumed constant.
Our objective is to solve for the diffusioosmotic velocity uDO parallel to the surface, which

develops at the outer boundary of the double layer. We first nondimensionalize the equations. We
define a diffusivity scale D∗ and an ion concentration scale c∗, which are typical values of ion
diffusivities and ion concentration in bulk. There are two relevant length scales in our system. First,
there is the length at which the ion concentration changes in bulk, which we denote here as a∗. The
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second relevant length scale is the Debye length λD =
√

εkBT
e2c∗ . We define the thermal potential as

ψT = kBT
e , δ = λD

a∗ , and a dimensionless surface charge Q = q
ec∗λD

.
We nondimensionalize the equations by introducing the dimensionless quantities X = x

a∗ , Y =
y

λD
, Ci = ci

c∗ , Di = Di
D∗ , U = a∗μ

εψ2
T

u, Ji = a∗
D∗c∗ ji, P = λ2

D

εψ2
T

p, � = ψ

ψT
, and α = εψ2

T
μD∗ . We note that α

is a characteristic Péclet number for the flow outside the double layer and the typical value of
α = O(10−1). Thus, Eqs. (1) reduce to

∇̂ · U = 0, (2a)

−∇̂P + δ∇̂2U + ∇̂2�∇̂� = 0, (2b)

−∇̂2� =
∑

i

ziCi, (2c)

∇̂ · Ji = 0, (2d)

Ji = −δ−1Di∇̂Ci + αUCi − δ−1DiziCi∇̂�, (2e)

where ∇̂ = λD∇ = exδ
∂

∂X + ey
∂
∂Y is the rescaled gradient operator.

B. The thin double-layer approximation

We analyze the system of Eqs. (2) in the limit of δ → 0, for which the solution is thus divided
into two regions: the double-layer region and the bulk region [5,6,35]. For a formal treatment of
these regions through asymptotic analysis, we refer the readers to Schnitzer and Yariv [33].

1. Analysis in the double layer

Inside the double layer, since x = O(a∗) and y = O(λD), the dimensionless X = O(1) and
Y = O(1). We now use order-of-magnitude analysis to simplify Eqs. (2a)–(2e). Using Eq. (2a),
we conclude UY

UX
= O(δ). Similarly, Eq. (2d) suggests that JiY

JiX
= O(δ). In the limit of δ → 0, these

relations suggest that velocity and species flux in the Y direction are negligible when compared
to their values in X direction. However, Eq. (2e) suggests an opposite relation between JiY and
JiX . Assuming Ci = O(1), � = O(1) and α � O(1), we can estimate JiY

JiX
= O(δ−1). Therefore, for

the order-of-magnitude predictions between Eq. (2e) and Eq. (2d) to be consistent with each other
and the condition of zero normal flux at Y = 0, the dominant terms in JiY from Eq. (2e) must
vanish. Thus, the diffusion and electromigration normal to the surface are in balance (δ−1Di

∂Ci
∂Y +

δ−1ziDiCi
∂�
∂Y = 0), which upon integration yields

Ci = Ci∞ exp[−zi(� − �∞)], (3)

where we have defined Ci∞(X ) and �∞(X ) as the concentration of an ith ion and the electrical
potential, respectively, far away from the surface, or in the bulk. For convenience, we define
�(X,Y ) = �0(X,Y ) + �∞(X ), to get

Ci = Ci∞ exp(−zi�0). (4)

Equation (4) is the well-known Boltzmann distribution. We note that �0(X, 0) = �D is, by
definition, the surface (zeta) potential relative to the bulk.

Next, we focus on Eq. (2c): since X and Y are both O(1) in the Debye layer, ∇̂2 = δ2 ∂2

∂X 2 + ∂2

∂Y 2 ≈
∂2

∂Y 2 , leading to

∂2�

∂Y 2
= ∂2�0

∂Y 2
= −

∑
i

ziCi. (5)
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Substituting Eq. (4) in Eq. (5) and integrating once while utilizing the matching condition
∂�0
∂Y |

Y →∞ = 0 [33], we get

(
∂�0

∂Y

)2

= 2
∑

i

Ci∞gi(�0), (6)

where we define

gi(�0) ≡ exp(−zi�0) − 1. (7)

We note that gi(�0) is the excess concentration of the ith ion in the double layer relative to the bulk.
The typical solution strategy at this stage is to integrate Eq. (6) to find the potential �0(X,Y ).

However, analytical solutions are possible only for z:z electrolytes or in the limit of small potentials.
Below we develop an alternative method that circumvents this step to address the general case
of electrolyte mixtures. Gauss’s law at the surface, i.e., y = 0, defines the surface charge q =
−ε

∂ψ

∂y |
y=0

, which in dimensionless variables is Q = − ∂�
∂Y |

Y =0
. We utilize Eq. (6) to relate Q to

�D as

Q = − ∂�

∂Y

∣∣∣∣
Y =0

= sgn(�D)

[
2

∑
i

Ci∞gi(�D)

]1/2

. (8)

Since we have solved for Ci [Eq. (4)] and ∂�
∂Y [Eq. (6)], we now focus on Eq. (2b) and utilize an

order-of-magnitude analysis. In the Y direction, the ratio of shear stress to the electrostatic term is
O(δUY ) � 1, and therefore, to satisfy Eq. (2b), the pressure term balances the electrostatic term, or

∂P

∂Y
= ∂2�0

∂Y 2

∂�0

∂Y
. (9)

One integration in Y , along with P(X,Y → ∞) = 0 (choosing the bulk pressure as a reference) and
the matching condition ∂�0

∂Y |
Y →∞ = 0, yields

P(X,Y ) = 1

2

(
∂�0

∂Y

)2

=
∑

i

Ci∞gi(�0). (10)

Physically, Eq. (10) states the well-known idea that the osmotic pressure inside the double layer is
higher than that in the bulk due to the electric field inside the double layer. Therefore,

∑
i Ci∞gi(�0)

is a measure of the rescaled energy density inside the double layer.
Given the form of Eq. (10) in terms of �0, it is useful to change independent variables to express

P(X,Y ) = P̃(Ci∞(X ), �0(X,Y )); note that there is no loss of generality in this transformation
within the thin Debye layer approximation used here. Thus, we may write

∂P

∂X

∣∣∣∣
Y

=
∑

i

∂ P̃

∂Ci∞

∣∣∣∣∣
�0

dCi∞
dX

+ ∂ P̃

∂�0

∣∣∣∣
Ci∞

∂�0

∂X
, (11)

∂P

∂Y

∣∣∣∣
X

=
∑

i

∂ P̃

∂Ci∞

∣∣∣∣∣
�0

∂Ci∞
∂Y

+ ∂ P̃

∂�0

∣∣∣∣
Ci∞

∂�0

∂Y
= ∂ P̃

∂�0

∣∣∣∣
Ci∞

∂�0

∂Y
. (12)

Comparing Eq. (12) with Eq. (9), we obtain

∂ P̃

∂�0

∣∣∣∣
Ci∞

= ∂2�0

∂Y 2
. (13)
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Utilizing Eq. (13) in Eq. (11) then results in

∂P

∂X

∣∣∣∣
Y

=
∑

i

∂ P̃

∂Ci∞

∣∣∣∣
�0

dCi∞
dX

+ ∂2�0

∂Y 2

∂�0

∂X
. (14)

Now, we focus on the X -direction balance of Eq. (2b). Since both X and Y are O(1) in the Debye
layer, Eq. (2b) can be approximated as

∂P

∂X
= ∂2UX

∂Y 2
+ ∂2�0

∂Y 2

∂�

∂X
. (15)

Substituting Eq. (14) in Eq. (15) yields

∂2UX

∂Y 2
= −∂2�0

∂Y 2

d�∞
dX

+
∑

i

∂ P̃

∂Ci∞

∣∣∣∣
�0

dCi∞
dX

. (16)

To the best of our knowledge, the form of Eq. (16) has not been noted previously. Equation (16)
provides insights into the mechanism for motion as it clearly separates the contributions from the
bulk electric field (electrophoresis), which is proportional to d �∞

dX , and the electric field energy inside
the double layer (chemiphoresis), which is proportional to dCi∞

dX .
Next, we integrate Eq. (16) to evaluate the diffusioosmotic slip velocity UDO = UX (X,Y → ∞).

Integration of the electrophoretic component is straightforward. We first use Eq. (10) to recognize
that ∂ P̃

∂Ci∞
= gi(�0), which on substitution into Eq. (16) yields

∂2UX

∂Y 2
= −∂2�0

∂Y 2

d�∞
dX

+
∑

i

gi(�0)
dCi∞
dX

. (17)

We integrate this equation once across the double layer subject to the condition that Y derivatives
vanish as Y → ∞ to obtain

∂UX

∂Y
= −∂�0

∂Y

d�∞
dX

+
∑

i

{
dCi∞
dX

∫ Y

∞
gi[�0(X,Y ′)] dY ′

}
. (18)

Since the chemiphoretic contribution to the velocity distribution depends on Y ′ only through the
excess potential �0(X,Y ′), it is convenient to change the integration variable from Y ′ to � ′ to find

∂UX

∂Y
= −∂�0

∂Y

d�∞
dX

+
∑

i

{
dCi∞
dX

∫ �0

0
gi(�

′)
(

∂� ′

∂Y ′

)−1

d� ′
}

. (19)

Similarly, we integrate again across the double layer and utilize the boundary conditions on velocity
and potential, i.e., UX (X, 0) = 0, and UX (X,∞) = UDO, �0(X, 0) = �D, and �0(X,∞) = 0 to get

UDO = d�∞
dX

�D +
∑

i

{
dCi∞
dX

∫ 0

�D

[∫ �0

0
gi(�

′)
(

∂� ′

∂Y

)−1

d� ′
](

∂�0

∂Y

)−1

d�0

}
. (20)

Finally, we substitute the expression for ∂�0
∂Y from Eq. (6) in Eq. (20) to obtain

UDO = d�∞
dX

�D − 1

2

∑
i

⎛
⎝dCi∞

dX

∫ �D

0

{∫ �0

0 gi(� ′)
[∑

j Cj∞g j (� ′)
]− 1

2 d� ′}
[∑

j Cj∞g j (�0)
] 1

2

d�0

⎞
⎠, (21)

where we recall that gi(�) ≡ exp(−zi�) − 1, as given by Eq. (7). Equation (21) is a statement
relating the diffusioosmotic velocity to the excess ion concentration gi(�) and the energy density of
the double layer

∑
i Ci∞gi(�), albeit a complicated one. To relate d �∞

dX and dCi∞
dX , we now analyze

Eqs. (2) in the bulk.
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2. Analysis in bulk

Now, we assume that there is no external electric field applied to the system. We also invoke
the condition that the surface conduction effect is negligible, i.e., the flux of ions in the direction
perpendicular to the surface can be neglected [33]. Hence, in the bulk, the dependence on Y vanishes,
or Ci = Ci∞(X ), P = 0, and � = �∞(X ). In the bulk, x = O(a∗) or X = O(1). Thus, for δ → 0,
Eq. (2c) yields the electroneutrality condition∑

i

ziCi∞ = 0. (22)

Moreover, since there is no externally applied electric field in diffusioosmosis, the net current in
the bulk should be zero,

∑
i ziJiX = 0 [22,32]. This condition allows us to relate �∞ to Ci∞ by

substituting the expression for JiX from Eq. (2e) and summing over the ions to find

−
∑

i

ziDi
dCi∞
dX

+ αUDO

∑
i

ziCi∞ − d�∞
dX

∑
i

z2
i DiCi∞ = 0. (23)

Using Eq. (22), Eq. (23) yields [24,36]

d�∞
dX

= −
∑

i Dizi
dCi∞
dX∑

i Diz2
i Ci∞

. (24)

We note that Eq. (24) is derived by ignoring surface conduction effects, and in the absence of
externally applied electric fields. However, for large �D, the surface conduction effect could be
important [32,33]. In Sec. IV we summarize typical scenarios encountered in experiments and
discuss when the surface conduction effect is likely to be significant. A more comprehensive and
rigorous theoretical analysis of this effect for a mixture of multiple ions is feasible within the current
framework and should be carried out in future studies.

3. Final result

We now combine the results from the double-layer analysis and the bulk region. Substituting
Eq. (24) in (21) yields

UDO = −
∑

i Dizi
dCi∞
dX∑

i Diz2
i Ci∞

�D − 1

2

∑
i

⎛
⎝dCi∞

dX

∫ �D

0

{∫ �0

0 gi(� ′)
[∑

j Cj∞g j (� ′)
]− 1

2 d� ′}
[∑

j Cj∞g j (�0)
] 1

2

d�0

⎞
⎠,

(25)

where gi(�0) ≡ exp(−zi�0) − 1 and Ci∞(X ) needs to satisfy the bulk electroneutrality condition,
i.e.,

∑
i ziCi∞ = 0. We also recall that �D is dependent on Q through Eq. (8).

Equation (25) is our main result for the diffusioosmotic velocity as a function of the zeta potential
�D of the surface and the bulk ion concentration fields. To the best of our knowledge, the form of this
equation has not been reported previously for the case of a general mixture of ions. We emphasize
that for the evaluation of UDO, the expression of �0(X,Y ) is not necessary, and integrating terms
containing gi(�0) is sufficient to evaluate UDO, as evident from Eq. (25).

It is clear from Eq. (25) that for a single salt, both the electrophoretic and chemiphoretic
components would be proportional to d ln C∞

dX . Moreover, since X = O(1) and Ci∞ = O(1), the
electrophoretic and chemiphoretic terms are both O(�D). Last, the diffusiophoretic velocity UDP

is equal and opposite to the value of UDO predicted in Eq. (25), i.e., UDP = −UDO, in the limit of
λD
b∗ → 0, where b∗ is the diameter of the particle.

C. The limit of |�D| � 1

We now discuss some limiting cases for which the integrals involved in UDO can be evaluated
explicitly. For small potentials (|�D| � 1), a Taylor series expansion shows that gi(�0) = −zi�0 +
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z2
i
2 �2

0 − z3
i
6 �3

0 + O(�4
0 ). Substituting this expression into Eq. (25) and using the electroneutrality

condition, we get

UDO = −
∑

i Dizi
dCi∞
dX∑

i Diz2
i Ci∞

�D −
∑

i z2
i

dCi∞
dX∑

i z2
i Ci∞

�2
D

8

+
[∑

i z3
i

dCi∞
dX∑

i z2
i Ci∞

− 5
(∑

i z2
i

dCi∞
dX

)(∑
i z3

i Ci∞
)

4
(∑

i z2
i Ci∞

)2

]
�3

D

54
+ O

(
�4

D

)
. (26)

Equation (26) provides a convenient expression to evaluate UDO with an order of accuracy O(�3
D).

If we neglect the cubic term, our result is consistent with previous reports [24,27], where the authors
arrived at their result by utilizing the potential description �0(X,Y ) in the linear limit (the Debye-
Hückel approximation) [24]. We also observe that at O(�3

D), the diffusioosmotic velocity depends
explicitly on the difference of magnitude between the anion and cation valences (through z3

i ), which
is an effect that is not captured by the Debye-Hückel theory.

D. The limit of |�D| � 1

We now develop useful approximations for the case of large potentials |�D|  1. For �D >

0, in any given mixture of ions, we identify the largest anion valence by z− = −maxi(|zi−|),
and approximate gi(�0) ≈ exp (−zi−�0). Since, in the chemiphoretic term, zi− appears in the
exponential, only anions (i) with zi− = z− will contribute significantly to summations involved in
the chemiphoretic portion of UDO. Thus, we sum only over salts with anion valence z−, indicated
below with a (−) over the sum. The analysis for �D < 0 is similar: we identify z+ = maxi(zi+) and
sum only over salts with cation valence z+, indicated below with a (+) over the sum.

Next, we observe from Eq. (25) that evaluating integrals involves the limit from 0 to �0 or 0
to �D. The approximation of gi(�0) above is inaccurate near the lower integration limit and can
be shown, as a result, to overestimate the integrals by a subdominant O(1) term for |�0|  1. We
correct for this error by modifying the lower limit of the integral in Eq. (25) from 0 to �
, where �


is an O(1) parameter whose value we discuss later. As we will show, the introduction of �
 leaves
the leading-order asymptotic behavior of UDO unchanged for |�D|  1, while allowing us obtain a
significant improvement in the numerical accuracy of our predictions for moderate zeta potentials
|�D| � 1.

Thus substituting (1) gi(�0) ≈ exp (−zi−�0) for �D  1, (2) gi(�0) ≈ exp (−zi+�0) for
−�D  1, and (3) modifying the lower limits of integration from 0 to �
 in Eq. (25), we obtain

UDO =

⎧⎪⎨
⎪⎩

−
∑

i Dizi
d Ci∞

dX∑
i Diz2

i Ci∞
�D+ ∑(+)

i

d Ci∞
dX

Ci∞

(
�D+�


z+
− 2{exp[z+(�
+�D )/2]−1}

z2+

)
, −�D  1

−
∑

i Dizi
d Ci∞

dX∑
i Diz2

i Ci∞
�D− ∑(−)

i

d Ci∞
dX

Ci∞

(
�
−�D

z−
+ 2{exp [−z−(�
−�D )/2]−1}

z2−

)
, �D  1.

(27a)

(27b)

To leading order, observe that the diffusioosmotic velocity is linear in �D for |�D|  1. The next
order is independent of �D but depends on the O(1) parameter �
, for which we determine an
approximation in the next section. In Sec. V we detail the accuracy of the Debye-Hückel limit and
the |�D|  1 approximations. We reiterate that our analysis assumes that finite ion size, dielectric
decrement, and surface conduction effects are negligible, which may become important for |�D| 
1, as we detail below.

IV. VALIDITY OF DERIVED PREDICTIONS

In this section, we address the validity of the assumptions we invoked during our analysis.
Specifically, we discuss the following assumptions: (A) thin double layer, (B) ions are point charges
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TABLE I. Summary of physical parameters and relevant dimensionless groups from recent experiments on
diffusiophoresis that justify our assumptions. To estimate the values, dion = 3 Å is assumed for the diameter
of an ion (see Sec. IV B) and γ = 10 [M]−1 is assumed for the dielectric decrement factor for an ion (see
Sec. IV C).

Property Ref. [9] Ref. [7] Ref. [11] Ref. [25]

c∗ 50 [mM] 50 [mM] 2 [mM] 1 [mM]

a∗ 60 [μm] 100 [μm] 500 [μm] 100 [μm]

b∗ 200 [nm] 500 [nm] 60–1000 [nm] 500 [nm]

λD 1.3 [nm] 1.3 [nm] 6.7 [nm] 9.5 [nm]
λD
a∗ 2.2 × 10−5 1.3 × 10−5 1.3 × 10−5 9.5 × 10−5

λD
b∗ 6.7 × 10−3 2.6 × 10−3 6.7 × 10−3 to 1.1 × 10−1 5.2 × 10−3

1
z ln

(
1

d3
ionc∗

)
7 7 10 11

1
z ln

(
εw

γ c∗
)

5 5 8 9

2 ln
(

b∗
λD

)
10 12 4–10 8

(assumed implicitly through the Nernst-Planck equations; see below for details), (C) electrical
permittivity is constant, and (D) surface conduction can be ignored. To facilitate this discussion,
we compiled data from some of the previously published experimental studies on diffusiophoresis
and estimated the physical parameters along with the relevant dimensionless groups; see Table I.

A. Thin double layer

The common thin double-layer assumption is central to the validity of our derived relation in
Eq. (25). Typically, experiments are conducted on diffusiophoresis (and not diffusioosmosis), i.e.,
the scenario when charged particles move under the presence of a salt gradient while the electrolyte
is stationary. In diffusiophoresis, there are three length scales: (1) particle size b∗, (2) Debye
length λD, and (3) the length scale over which the imposed ion concentration decays a∗. To utilize
Eq. (25) for describing experiments, in addition to λD

a∗ = δ � 1, λD
b∗ � 1 also needs to be satisfied.

Based on previously published experimental studies in Table I, we observe that λD = 1–10 nm,
a∗ = 100–500 μm, and b∗ = 60–1000 nm. The table shows that λ

a∗ � O(10−4) and λ
b∗ � O(10−2).

Therefore, the thin double-layer approximation is applicable to typical experimental scenarios.
However, we note that when b∗ � 100 nm, λ

b∗ � O(10−1), and there might be some deviations from
the velocities predicted by Eq. (25).

B. Ions are point charges

Our analysis utilizes the Nernst-Planck equations, i.e., Eqs. (2d)–(2e), to solve for the
diffusioosmotic and diffusiophoretic velocities. The Nernst-Planck description assumes that ions
are point charges and the volume fraction of ions can be ignored when compared to the volume
fraction of solvent [28]. However, for large c∗ and �D, the concentration of surface-attracted ions
inside the double layer can be large, and finite ion size effects could become important [26,28,29].
The dimensionless number that governs this effect is d3

ionc∗, where dion is the diameter of an ion.
Physically, this parameter is the dimensionless volume fraction of ions in the bulk. The finite ion
size effects are not significant when |�D| � 1

z ln ( 1
d3

ionc∗ ) [26]. To estimate this value, it is crucial to

estimate the value of dion. Typically, dion ≈ 1 Å, although previous studies have argued that the ion
diameter should include the hydration shell, modifying this estimate to dion ≈ 3 Å [28]. Therefore,
we assumed that dion = 3 Å to estimate values. Table I shows that finite ion sizes are not significant
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for |�D| � 7. Since most experiments are performed for particles with �D � 4, we expect that finite
ion size effects are not significant for diffusioosmotic and diffusiophoretic velocity predictions.

C. Electrical permittivity is constant

We also assumed that the electrical permittivity ε is constant. However, inside the double layer,
the electrical permittivity can decrease due to a large concentration of ions. This effect is known as
the dielectric decrement, and, similar to finite ion size, it also becomes significant at large c∗ and
�D [26,30,31]. Specifically, this effect is not significant when |�D| � 1

z ln ( εw

γ c∗ ) [26], where γ is
the dielectric decrement factor and εw is the dielectric constant of the solvent. In our analysis, we
assume that the solvent is water where εw = 78. To estimate the validity, we assumed γ = 10 [M]−1

[30]. We show in Table I that for |�D| � 5, this effect can be ignored. Therefore, a change in the
dielectric constant is unlikely to be significant for typical diffusiophoretic experiments.

D. Surface conduction

As mentioned previously, within the Poisson-Boltzmann framework, for large �D, a more careful
treatment of the bulk region is required to account for the effect of surface conduction where the
currents from the double layer can leak into the bulk region [32,33]. This effect is not significant for
|�D| � 2 ln ( 1

δ
) [33]. Table I demonstrates that this effect may not be significant for |�D| � 10 and

would likely not influence typical experiments in diffusiophoresis and diffusioosmosis.
In addition to the above mentioned assumptions, we note that we have not considered specific

ion interactions in our analysis. This effect could be taken into account by assuming a Stern layer
near the surface and specifically treating ion interactions [37], which will be pursued in our future
work.

V. ONE ELECTROLYTE WITH ASYMMETRIC VALENCES

We now discuss the results from Eq. (25) for the case of a single electrolyte. In this section, we
also tabulate diffusiophoretic velocities for some common valence-asymmetric electrolytes such as
CaCl2, Na2SO4, H2SO4, and others. Since we focus on the case of a single electrolyte in this section,
for further discussion, we omit the i subscript from Ci∞, gi(�0) etc.

A. Exact solution

For a solution consisting of a single electrolyte, to maintain electroneutrality, we assume
that there is one cation with valence z+ and one anion with valence z− . Moreover, to satisfy
electroneutrality in the bulk, we write C+∞ = −z−C∞ and C−∞ = z+C∞. Utilizing Eqs. (7) and (25),
we obtain

UDO
d ln C∞

dX

= −β�D − 1

2

∫ �D

0

∫ �0

0 [−z− exp(−z+� ′) + z+ exp(−z−� ′) − z+ + z−]1/2 d� ′

[−z− exp(−z+�0) + z+ exp(−z−�0) − z+ + z−]1/2
d�0,

(28)

where β = D+−D−
z+D+−z−D−

. We note that the value of β here is consistent with the idea of a junction

potential that is generally suggested for asymmetric diffusivities [38,39]. We now evaluate Eq. (28)
in different limits. For one electrolyte and z+ = −z− = z, Eq. (28) reduces to the well-known result
[6,27,35]

UDO = −d ln C∞
dX

{
β�D + 4

z2
ln

[
cosh

(
z�D

4

)]}
. (29)

043702-10



DIFFUSIOPHORETIC AND DIFFUSIOOSMOTIC …

B. Analytical approximations

In the limit of |�D| � 1, Eq. (26) or Eq. (28) reduces to

UDO
d ln C∞

dX

= −β�D − �2
D

8
− (z+ + z− )

�3
D

216
+ O

(
�4

D

)
. (30)

Equation (30) shows that the electrophoresis term is affected by valence through the definition of β.
The quadratic terms of the chemiphoretic contribution is independent of the valence, whereas the
cubic correction is influenced by the difference between the (unsigned) valences of the cation and
anion. For |�D|  1, Eq. (27) reduces to

UDO
d ln C∞

dX

=
⎧⎨
⎩

−β�D + (
�D+�


z+
− 2{exp[z+(�
+�D )/2]−1}

z2+

)
, −�D  1

−β�D − (
�
−�D

z−
+ 2{exp[−z−(�
−�D )/2]−1}

z2−

)
, �D  1.

(31a)

(31b)

Therefore, as |�D| increases, the impact of asymmetry in cation and anion valences on the
chemiphoretic contribution also increases. Comparing the approximation (31) with the exact
solution (29) for large zeta potentials, we find that the two expressions agree identically at leading
(linear) order in �D. Subdominant terms in both expressions are O(1); requiring agreement at this
order determines the parameter

�
 =
{

z−1
+ (4 ln 2 − 2), −�D  1

−z−1
− (4 ln 2 − 2), �D  1.

(32a)

(32b)

With these choices for �
, (31) and (29) differ only by a terms exponentially small in |�D|. We note
that the �
 values determined above are formally valid for a single z:z electrolyte, though we expect
them to provide reasonable approximations for more complicated situations such as mixtures of
valence-asymmetric electrolytes (see Fig. 2 and the Appendix). We reiterate that the leading-order
behavior of our approximation Eq. (31) for large potentials remains independent of �
.

C. Validity of analytical approximations

We now present the variation of UDO by numerically integrating the exact expression Eq. (28)
for some typical z+ :z− electrolytes, and discuss the accuracy and applicability of approximations
Eqs. (30)–(31). The properties of common electrolytes are summarized in Table II, and typical
results for UDO are shown in Fig. 2. We find that though Eq. (30) is derived for |�D| � 1, it is
a good approximation of the exact result from Eq. (28) for |�D| � 1; see Fig. 2(a). However, we
discover that Eq. (30) with accuracy up to O(�3

D) is often closer to the numerical results as compared
to Eq. (30) with accuracy only up to O(�2

D), depending on the value of β, z+ , and z− . Therefore, the
improvements due to higher-order corrections are restricted for larger |�D| and Eq. (30) should be
utilized for |�D| � 1. In contrast, Eq. (31) gives a more accurate predication for larger |�D| and is
best utilized for |�D| � 4, though in many cases can also provide good approximations for smaller
potentials; see Fig. 2(b). We note that before utilizing Eq. (31), it should be ensured that effects
such as finite ion size, dielectric decrement, and surface conduction are not significant. The results
in Fig. 2(b) were generated using the values of �
 provided in Eq. (32). We discuss the sensitivity of
our results on the choice of �
 in the Appendix. We emphasize that z+ and z− significantly influence
UDO, as evident from Eq. (31) and Figs. 2(a) and 2(b).
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FIG. 2. Approximate solutions for the diffusioosmotic velocity as compared to predictions calculated
by numerical integration. The solid lines are the results of numerically integrating Eq. (28), circles are
results from Eq. (30) with accuracy up to O(�2

D ), squares are evaluated through Eq. (30) with accuracy
up to O(�3

D ), and triangles are generated from Eq. (31) with �
 values given by Eq. (32). The parameters
z+ = 1, z− = −2, β = 0.72 correspond to H2SO4, z+ = 1, z− = −2, β = 0.08 correspond to Na2SO4, and
z+ = 2, z− = −1, β = −0.34 correspond to CaCl2; see Table II.

D. Some common z+ :z− electrolytes

We now present a comparison of UDO for different electrolytes, and the results are summarized in
Fig. 3. We first compare HCl and H2SO4. Since the cation is H+ in these two electrolytes, β values
are large and positive in both cases. For small |�D|, the ratio of electrophoretic and chemiphoretic
contributions is 8β

�D
; see Eq. (30). Therefore, for HCl and H2SO4, the two contributions are

cooperative for �D > 0 and competitive for �D < 0. Next, we compare NaCl and Na2SO4. Though
the cation for both of these electrolytes is the same, due to the smaller diffusivity of SO2−

4 as
compared to Cl−, and because the valence of SO2−

4 is higher, there is a considerable difference
between the β values of the two electrolytes (see Table II). We find that since β is negative for
NaCl, for �D > 0, the electrophoretic and chemiphoretic components compete with each other.
In contrast, since the electrophoretic effect is weak for Na2SO4, for �D > 0, the diffusioosmotic
velocity of Na2SO4 is larger in magnitude as compared to NaCl. However, the opposite is true for
�D < 0, where for NaCl, the electrophoretic and chemiphoretic components are similarly signed,
and thus the case of NaCl has a larger magnitude of diffusioosmotic velocity as compared to
Na2SO4. A similar comparison can be drawn between CaCl2 and Mg(HCO3)2. These examples
demonstrate that valence-asymmetric electrolytes can be utilized for control over diffusioosmotic
and diffusiphoretic processes and may influence other electrokinetic phenomena.

TABLE II. Values of z+ , z− , D+, D−, and β for some common electrolytes at 25 ◦C. The ion diffusivities
are taken from Ref. [27].

Electrolyte z+ z− D+[10−9 m2 s−1] D−[10−9 m2 s−1] β

HCl 1 −1 9.31 2.03 0.64

H2SO4 1 −2 9.31 1.06 0.72

NaCl 1 −1 1.33 2.03 −0.21

Na2SO4 1 −2 1.33 1.06 0.08

CaCl2 2 −1 0.79 2.03 −0.34

Mg(HCO3)2 2 −1 0.70 1.18 −0.18

043702-12



DIFFUSIOPHORETIC AND DIFFUSIOOSMOTIC …

FIG. 3. Diffusioosmotic velocity for some common z:z and z+ :z− electrolytes as given by Eq. (28).

VI. CONCLUSIONS

In this article, we presented general results for diffusioosmotic and diffusiophoretic velocities for
a mixture of valence-asymmetric electrolytes with arbitrary zi. Equation (25) includes the effect of
valence asymmetry for a mixture of electrolytes, and Eq. (28) describes the dependence for a single
electrolyte. We also presented the approximate solutions in the limit of |�D| � 1 and |�D|  1; see
Eqs. (26), (27), (30), and (31). We demonstrated that asymmetry in electrolyte valence is a useful
parameter to tune the diffusiophoretic and diffusioosmotic motions. Our analysis will motivate
future experimental studies on diffusiophoresis and diffusioosmosis using mixture of electrolytes
and multivalent salts. Future theoretical studies in this area could focus on including the effects
of finite ion size, dielectric decrement, and surface conduction in the analysis to further generalize
diffusiophoretic and diffusioosmostic velocity relations.
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FIG. 4. Comparison of UD0 obtained from Eq. (31) with numerical solution of Eq. (28) for different values
of �
. Parameter values of β = 0.72, z+ = 1 and z− = −2 (corresponding to H2SO4) were used.
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APPENDIX: THE CHOICE OF ��

We now discuss the dependence of UDO on �
 when Eq. (31) is utilized to evaluate UDO. We
find that �
 from Eq. (32) provides the best approximation to the numerical solution as compared
to other values; see Fig. 4. However, all values of �
 between 0 and 1 work reasonably well, but for
larger values of �
, such as �
 = 5, the deviation from the numerical solution is significant.
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