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Entry and exit flows in curved pipes
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Solutions are presented for both laminar developing flow in a curved pipe with a
parabolic inlet velocity and laminar transitional flow downstream of a curved pipe
into a straight outlet. Scalings and linearized analyses about appropriate base states
are used to show that both cases obey the same governing equations and boundary
conditions. In particular, the governing equations in the two cases are linearized about
fully developed Poiseuille flow in cylindrical coordinates and about Dean’s velocity
profile for curved pipe flow in toroidal coordinates respectively. Subsequently, we
identify appropriate scalings of the axial coordinate and disturbance velocities that
eliminate dependence on the Reynolds number Re and dimensionless pipe curvature
α from the governing equations and boundary conditions in the limit of small α and
large Re. Direct numerical simulations confirm the scaling arguments and theoretical
solutions for a range of Re and α. Maximum values of the axial velocity, secondary
velocity and pressure perturbations are determined along the curved pipe section.
Results collapse when the scalings are applied, and the theoretical solutions are
shown to be valid up to Dean numbers of D = Re2α = O(100). The developing
flows are shown numerically and analytically to contain spatial oscillations. The
numerically determined decay of the velocity perturbations is also used to determine
entrance/development lengths for both flows, which are shown to scale linearly with
the Reynolds number, but with a prefactor ∼60 % larger than the textbook case of
developing flow in a straight pipe.

Key words: general fluid mechanics, mathematical foundations, Navier–Stokes equations

1. Introduction

Flows in curved pipes have been the focus of much research over the last century,
largely due to their prevalence in various fluid flow systems, with applications ranging
from large-scale industrial piping systems to microscale biological flows. Flows with
curved streamlines in general are known to produce secondary flows due to cross-
stream pressure gradients resulting from centrifugal effects. These flows tend to be
vortical in nature, and they continue to be areas of active research (Wang & Rusak
1997; Gallaire et al. 2006; Ault et al. 2016). Improved understanding of the velocity

† Email address for correspondence: hastone@princeton.edu

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/jfm.2017.72
Downloaded from https:/www.cambridge.org/core. Princeton Univ, on 08 Mar 2017 at 19:34:56, subject to the Cambridge Core terms of use, available at

http://orcid.org/0000-0002-1232-362X
http://orcid.org/0000-0002-7733-8742
http://orcid.org/0000-0002-2618-4560
mailto:hastone@princeton.edu
https:/www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2017.72
https:/www.cambridge.org/core


Entry and exit flow in curved pipes 571

Authors Re α Remarks

Singh (1974) O(103) O(0.1) Matched asymptotic expansion solution
to the developing flow in a curved pipe
(uniform inlet)

Yao & Berger 1000 and 0.05–0.3 Approximate integral method solution to
(1975) 2000 coupled core flow/boundary layer equations

for uniform entry problem
Smith (1976) �1 �1 Asymptotic analysis of entry flow boundary

layer problem into a curved pipe
Kluwick & �1 �1 Integral method solution to the
Wohlfart (1984) boundary layer equations for developing

flow in curved ducts
So (1976) � 1 O(0.1) Approximate Pohlhausen-type solution for a

2D curved channel flow
Singh, Sinha O(103) O(0.1) Boundary layer analysis for pulsatile entrance
& Aggarwal (1978) flow relevant to blood flow in the aorta
Present work �1 �1 Asymptotic scalings and separation of variables

solutions for straight/curved pipe transitions

TABLE 1. A review of studies related to the entry flow problem in curved pipes.

and pressure profiles in networks with curved piping elements can open the way for
new applications, especially in physiology and heat and mass transfer.

In this paper, we study the flow development in the entry region of a curved
pipe as well as the flow downstream of a curved pipe into a straight outlet. We
identify scalings that eliminate dependence on the flow Reynolds number, Re, and
pipe-to-curvature radius ratio, α, from linearized forms of the Navier–Stokes equations.
We confirm these scalings using three-dimensional numerical simulations of the flows.
Here, we define the Reynolds number as Re= ρuavgd/µ, where ρ is the fluid density,
uavg is the average axial pipe velocity, d is the pipe diameter and µ is the dynamic
viscosity of the fluid. The pipe-to-curvature radius ratio is defined as α = d/(2R),
where R is the radius of curvature of the centreline of the curved pipe. With these
definitions, we define the Dean number as D = Re2α. Using a similar definition,
Dean derived an analytical solution for fully developed pressure-driven flow in slowly
curving pipes by rewriting the basic equations in toroidal coordinates (Dean 1927,
1928). We adopt a similar coordinate system, as shown in figure 1 for the entry
problem, where r and θ identify the position in the cross-section of the pipe and ψ
identifies the angular or axial position along the pipe. The corresponding arclength
coordinate is given by z. Dean’s work identified the presence of counter-rotating
vortices in the fully developed flow in a curved pipe and has since inspired much
research related to curved channels, including studies of the entry flow, unsteady
laminar flows, flows in finite bends, channels with variable cross-sections, turbulent
flows, the flow of non-Newtonian fluids, multiphase flows, mass transfer, fluid–particle
mixtures, and many others (Berger, Talbot & Yao 1983).

Several theoretical, experimental and numerical studies have documented features
of developing flow in curved pipes. For a brief review of these studies, see table 1.
Studies of the O(d) region near the inlet show that the nature of the inlet condition
significantly affects the initial development of the flow (Singh 1974). A physical
description of the flow development suggests that enhanced mixing due to secondary
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FIGURE 1. Flow into a curved pipe of diameter d with centreline radius of curvature R.
(a) The toroidal coordinate system used in the curved pipe section. (b,c) The top-down
and axial cross-sectional views of the simulation domain respectively. It should be noted
that z is the centreline arclength corresponding to the angle ψ . Each point is uniquely
identified by (r, θ, z). Arrows indicate the direction of flow. Mesh resolutions have been
coarsened by a factor of 5 for visualization purposes. The inlet velocity is up, denoting
the fully developed parabolic flow in a straight pipe.

flows can significantly reduce hydrodynamic entrance lengths in comparison with
those found in developing straight pipe flow for a given inlet condition (Singh 1974),
which we confirm numerically in § 4. Yao & Berger (1975) proposed an empirical
relationship for the entry length zent (non-dimensionalized by the pipe diameter) in a
curved pipe, based upon the development length to reach 99 % of the fully developed
flow velocity, which is given by

zent = (3.8α + 0.86)D1/4α−1/2 for 0.05<α < 0.3. (1.1)

This result suggests that zent ∝ Re1/2 when 0.05 < α < 0.3. The majority of our
simulations reported below are for α < 0.05, although we do observe the zent ∝ Re1/2

behaviour for our simulations with α = 0.1, albeit with a different scale factor from
that suggested by (1.1) (see figure 3). The difference in prefactors is likely to be
dependent on the inlet condition.
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Entry and exit flow in curved pipes 573

When D � 1, then either Re � 1, α � 1, or both. If Re � 1, the viscous flow
develops over the geometric length scale of the pipe, and the entrance length is O(d)
(Mohanty & Asthana 1978; Fox, Pritchard & McDonald 2009). If α� 1, and D� 1,
the flow is practically straight, and for a given Re� 1 the entrance length should
be practically the same as in a straight pipe at the same Reynolds number with the
same inlet condition, i.e. the entrance length should be O(dRe) (Yao & Berger 1975).
Certainly, with uniform inlet flow, the entrance length in a straight pipe should be
nearly identical to the entrance length in a curved pipe with α � 1 and D� 1 for
the same Re. However, for flow transitioning from a straight pipe to a curved pipe
with α� 1 and D� 1, the base flow is already fully developed, and the dynamics of
interest is a small perturbation to the base flow. Thus, it is not immediately apparent
that the perturbation dynamics also develops over O(dRe).

Several other studies have examined the nature of pipe flows into bends. Boutabaa
et al. (2009) performed three-dimensional numerical simulations of developing flows
in curved ducts for Newtonian and viscoelastic fluids (using the Phan-Thien–Tanner
model) and found that the transition from two Dean cells to four occurs at a lower
Dean number for viscoelastic fluids than for Newtonian fluids. Fairbank & So (1987)
experimentally measured the upstream and downstream influences of a 180◦ bend on
a pipe flow, suggesting an upstream influence of one pipe diameter for D= 4.8× 104

and no upstream influence for D= 1.2× 104. Furthermore, downstream influences of
14 and 11 pipe diameters were found for D = 4.8 × 104 and 1.2 × 104 respectively,
indicating flow development more than twice as fast as predicted by the linearized
D � 1 theory in § 3, which supports the physical description of flow development
above. In addition, Olson & Snyder (1985) presented experimental measurements
of air flows in curved pipes with 1.0 × 104 < D < 2.5 × 105 and showed that the
secondary velocity components do not develop monotonically along the pipe, but
instead overshoot before settling to their fully developed values. We show that this
overshoot also occurs for Dean numbers at least in the range O(0.1) < D < O(104),
and can be described well by an asymptotic solution (see § 3). Liu & Masliyah (1996)
also used numerical simulations to propose entrance length correlations for developing
flow in helical pipes and also showed that the flow develops non-monotonically.
Finally, Tadjfar & Smith (2004) used slender-flow theory to develop models for the
long-scale O(dRe) flow in branching flows that match well with direct numerical
simulations for a surprisingly large range of branching angles.

In addition, Smith (1976) studied the flow into a curved pipe with Re� 1, primarily
focusing attention on the O(d) region from the inlet. He demonstrated that the
influence of the region upstream of the bend is a vital factor in solving for the wall
boundary layer solution in the curved pipe section and described a mechanism by
which high-Reynolds-number pipe flows can adjust to disturbances downstream. Smith
(1976) also briefly examined the O(dRe) development of the flow and suggested that
the problem needs a numerical treatment (see § 4.1 of Smith (1976)). Berger et al.
(1983) later suggested that it might be possible to obtain an analytical solution for this
low-Dean-number entry flow problem using a perturbation approach, although, to the
best of our knowledge, they never found such a solution. In addition to providing the
numerical treatment that Smith (1976) suggests is necessary, we present an analytical
solution to the problem originally posed by Berger et al. (1983) for the flow in the
limit of D � 1, and we use the numerical simulations to show that this solution
is valid up to D = O(100). Furthermore, although the upstream influence must be
considered when obtaining the wall boundary layer solution for the O(d) problem,
Smith (1976) shows that for the long-length-scale O(dRe) problem, the inlet condition
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will be practically the fully developed Poiseuille flow. This idea, introduced by Smith,
makes the theory in § 3 possible, by providing a simple analytical boundary condition
for both the entry and exit problems.

Previously, we considered the flow downstream of a curved pipe in a straight
outlet section (Ault, Chen & Stone 2015). In particular, we used scaling arguments
to eliminate from the problem the dependence on the Reynolds number and upstream
pipe curvature, and we systematically quantified the transition lengths as a function of
Re. Here, we apply similar scaling arguments to the developing flow in a curved pipe.
We then reduce the governing equations to an eigenvalue problem for a sixth-order
ordinary differential equation. By solving this problem, we arrive at an analytical
solution for both the developing flow in a curved pipe and the flow downstream of a
curved pipe in a straight outlet. For the latter case, we use cylindrical coordinates as
in Ault et al. (2015), where r and θ define the position on a cross-section and z is
the axial streamwise coordinate, where z = 0 corresponds to the transition from the
curved to straight pipe sections and θ = 0 points in the direction of the outer bend
of the upstream curved section. It should be noted that we also use z as the axial
coordinate (arclength) in the developing curved pipe flow problem (figure 1).

In § 2 and appendix B, we provide details of the numerical approach used to
verify our theoretical solutions. In § 3, we linearize the continuity and Navier–Stokes
equations in toroidal or cylindrical coordinates and develop scaling arguments that
eliminate Re and α dependence from the problems. We then use symmetry arguments
and a separation of variables approach to achieve an analytical solution for both the
developing curved pipe flow and the flow downstream of a curved pipe. We generalize
these analyses to vector form in § 3.3. In § 4, we show that the identified scalings
imply a linear relationship between the transition lengths and Re, and we determine
the theoretical proportionality coefficient for this relationship. Numerical simulation
results are compared with the linearized theory of § 3, and the velocity/pressure
data are seen to collapse when the scaling arguments are applied. We show that the
proposed solutions match the numerical data well up to D = O(100) and break
down for larger Dean numbers. These results effectively address the questions
originally posed by Smith (1976) and Berger et al. (1983). Finally, in § 5, we
present conclusions and ideas for future work.

2. Methods
In this section, we describe the flow geometry and the methodology used for

determining transition lengths. Additional details about the numerical methods,
including the specific flow solver and boundary conditions, can be found in
appendix B.

2.1. Geometry
A sample simulation domain for the developing flow in a curved pipe is shown in
figure 1(b,c). The domain consists of a straight inlet section with length 5d, which
enters a curved pipe section that forms a circular arc. Properties of the simulations
are given in table 2. The scaling arguments that will be developed in § 3 require
Re�1 and D�1. We choose values of Re and α that reasonably satisfy both of these
limits, as well as constraints imposed by the solver. For the case of flow downstream
of a curved pipe, similar simulations were performed (see Ault et al. 2015). Fully
developed flow in a curved pipe was simulated entering a straight outlet, and the
transition back to parabolic Poiseuille flow was studied.
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Entry and exit flow in curved pipes 575

α Maximum Re Maximum ψ Maximum D
(deg.)

2.5× 10−6 200 0.03 0.10
1.0× 10−5 200 0.12 0.40
2.0× 10−5 200 0.24 0.80
4.0× 10−5 200 0.48 1.60
2.5× 10−3 500 30 625
1.0× 10−2 500 120 2500
1.0× 10−1 300 315 9000

TABLE 2. Summary of geometric parameters used in the simulations for flow entering
a curved pipe. The maximum value of ψ denotes the total angle swept by the curved
pipe section in the simulation domain. The total arclength of the curved section for each
simulation was approximately 105 pipe diameters, except for the α=1.0×10−1 case which
had a total arclength of approximately 27 pipe diameters.

2.2. Determining transition/development lengths
We define the axial position at which a flow is fully developed as the axial coordinate,
zent, at which the magnitude of a component of the velocity or pressure has achieved
99 % of its final value. Lengths are non-dimensionalized by d. We also specify a
dimensionless entrance angle, ψent = 2αzent, where zent is the dimensionless arclength
that is spanned by the angle ψent in radians. Subscript D denotes the fully developed
values in the curved pipe predicted by Dean (see (3.6)), and usec =

√
u2

r + u2
θ is the

magnitude of the secondary velocity. To determine transition lengths, we examine a
cross-section at z= 0 (the entrance to the curved pipe) and determine the maximum
values of |uz − uz,D|, |usec − usec,D| and |p− pD|. These represent deviations from the
fully developed axial velocity component, secondary velocity component and pressure
respectively. Systematically increasing z in the axial direction, the maximum of each
of these values is recorded for each z. These perturbations decay monotonically over
several orders of magnitude as z is increased. However, we will show numerically and
analytically that this transition is not monotonic and also contains a slowly oscillating
component. Identifying the axial location where the chosen parameter achieves 99 %
of its final value determines the entrance length zent. This procedure is identical for
the flow downstream of a curved pipe into a straight outlet, except that the parameters
of interest are |uz − up|, |usec| and |p − pp|, where the subscript p denotes the fully
developed Poiseuille flow.

3. Theory
In this section, we show that by linearizing the continuity and Navier–Stokes

equations in toroidal and cylindrical coordinates about the respective fully developed
flows, performing judicious scaling arguments and taking the asymptotic limits
of small curvature and large Reynolds number, the α and Re dependence can be
eliminated from the governing equations and boundary conditions for the perturbation
pressure and velocity components. Symmetry arguments reduce the resulting equations
to a single partial differential equation that is second order in the axial coordinate
z and sixth order in the transverse coordinate r. Finally, a separation of variables
approach results in an eigenvalue problem with a series solution of oscillating
decaying exponentials in the axial direction.
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3.1. Flow in a straight section downstream of a curved pipe
For both the entry and exit cases, the governing equations are the steady incompress-
ible Navier–Stokes and continuity equations, given by

u · ∇u=−∇p+ Re−1∇2u and ∇ · u= 0, (3.1a,b)

where u is the velocity vector non-dimensionalized by uavg and p is the pressure
non-dimensionalized by ρu2

avg. For the case of flow downstream of a curved pipe, we
use cylindrical coordinates as in Ault et al. (2015). The components of the velocity
vector are denoted u = (ur, uθ , uz), and the radial and axial coordinates r and z are
non-dimensionalized by the pipe diameter d. We linearize about the fully developed
straight pipe solution (Poiseuille flow), so that u and p are given by

ur = u′r, uθ = u′θ , uz = up(r)+ u′z, p= pp(z)+ p′, (3.2a−d)

where up(r) = 2 − 8r2 is the fully developed axial velocity component and pp(z) =
−32z/Re + c is the fully developed pressure distribution (c is a constant). Primes
denote the small secondary components. Based upon the work of Dean (1927, 1928)
and Ault et al. (2015), we rescale the equations with

z̄= z
Re
, p̄′ = p′

α
, ū′z =

u′z
Re2α

, ū′r =
u′r

Reα
and ū′θ =

u′θ
Reα

. (3.3a−e)

In the asymptotic limits of α� 1 and Re� 1, the governing equations (3.1) simplify
to

∂ ū′r
∂r
+ ū′r

r
+ 1

r
∂ ū′θ
∂θ
+ ∂ ū′z
∂ z̄
= 0, (3.4a)

up
∂ ū′r
∂ z̄
=−∂ p̄′

∂r
+ 1

r
∂

∂r

(
r
∂ ū′r
∂r

)
+ 1

r2

∂2ū′r
∂θ 2
− ū′r

r2
− 2

r2

∂ ū′θ
∂θ
, (3.4b)

up
∂ ū′θ
∂ z̄
=−1

r
∂ p̄′

∂θ
+ 1

r
∂

∂r

(
r
∂ ū′θ
∂r

)
+ 1

r2

∂2ū′θ
∂θ 2
+ 2

r2

∂ ū′r
∂θ
− ū′θ

r2
, (3.4c)

ū′r
dup

dr
+ up

∂ ū′z
∂ z̄
= 1

r
∂

∂r

(
r
∂ ū′z
∂r

)
+ 1

r2

∂2ū′z
∂θ 2

. (3.4d)

We note that the equations are independent of Re and α.

3.2. Developing flow in a curved pipe
For the case of developing flow in a curved pipe, toroidal coordinates (figure 1a)
are used to represent the continuity and steady Navier–Stokes equations (Singh 1974).
These equations are given by

∂ur

∂r
+
(

1+ 4αr cos θ
1+ 2αr cos θ

)
ur

r
+ 1

r
∂uθ
∂θ
− 2αuθ sin θ

1+ 2αr cos θ
+ 1

1+ 2αr cos θ
∂uz

∂z
= 0,

(3.5a)
ur

2
∂ur

∂r
+ uθ

2r
∂ur

∂θ
+ uz

2+ 4αr cos θ
∂ur

∂z
− u2

θ

2r
− αu2

z cos θ
1+ 2αr cos θ

=−1
2
∂p
∂r
− 1

Re

[(
1
2r
∂

∂θ
− α sin θ

1+ 2αr cos θ

)(
∂uθ
∂r
+ uθ

r
− 1

r
∂ur

∂θ

)
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− 1
2 (1+ 2αr cos θ)2

∂2ur

∂z2
+ 1

1+ 2αr cos θ

×
(

1
2
∂2uz

∂r∂z
+ α cos θ

1+ 2αr cos θ
∂uz

∂z

)]
, (3.5b)

ur

2
∂uθ
∂r
+ uθ

2r
∂uθ
∂θ
+ uz

2+ 4αr cos θ
∂uθ
∂z
+ uruθ

2r
+ αu2

z sin θ
1+ 2αr cos θ

=− 1
2r
∂p
∂θ
+ 1

Re

×
[

1
2 (1+ 2αr cos θ)2

∂2uθ
∂z2
− 1

r (2+ 4αr cos θ)
∂2uz

∂z∂θ
+ α sin θ
(1+ 2αr cos θ)2

∂uz

∂z

+
(

1
2
∂

∂r
+ α cos θ

1+ 2αr cos θ

)(
∂uθ
∂r
+ uθ

r
− 1

r
∂ur

∂θ

)]
, (3.5c)

ur

2
∂uz

∂r
+ αuruz cos θ

1+ 2αr cos θ
+ uθ

2r
∂uz

∂θ
− αuθuz sin θ

1+ 2αr cos θ
+ uz

2+ 4αr cos θ
∂uz

∂z

=− 1
2+ 4αr cos θ

∂p
∂z
+ 1

Re

[(
∂

∂r
+ 1

r

)(
1
2
∂uz

∂r
+ αuz cos θ

1+ 2αr cos θ

)
+ 1

2r2

∂2uz

∂θ 2
− α

r
∂

∂θ

(
uz sin θ

1+ 2αr cos θ

)
−
(
∂

∂r
+ 1

r

)
1

2+ 4αr cos θ
∂ur

∂z

−1
r
∂

∂θ

(
1

2+ 4αr cos θ
∂uθ
∂z

)]
. (3.5d)

For this case, we choose a different linearization about Dean’s solution for fully
developed flow in a curved pipe. In the curved pipe, additional centripetal acceleration
terms set up secondary fluid motions, resulting in a new fully developed flow state.
We show that with this linearization, the governing equations (3.5) reduce to the
same form as (3.4). First, we introduce Dean’s fully developed solution for flow in a
curved pipe, given by

ur,D(r, θ)= Reα cos θ f1(r)= u′r,D(r, θ), (3.6a)
uθ,D(r, θ)=−Reα sin θ f2(r)= u′θ,D(r, θ), (3.6b)

uz,D(r, θ)= f3(r)− α cos θ f4(r)+ Re2α cos θ f5(r)= up(r)+ u′z,D(r, θ), (3.6c)

pD(r, θ, z)=−32z
Re
+ α cos θ f6(r)+ c= pp(z)+ p′D(r, θ), (3.6d)

where the D subscript denotes Dean’s solution. It should be noted that this solution
is strictly valid in the limit D� 1. The fi(r) are polynomials in r given by

f1(r)= 1
36

(
1− 4r2

)2 (
1− r2

)
, (3.7a)

f2(r)= 1
144

(
1− 4r2

) (
4− 92r2 + 112r4

)
, (3.7b)

f3(r)= up(r)= 2− 8r2, (3.7c)

f4(r)= 3r
(
1− 4r2

)
, (3.7d)

f5(r)= r
2880

(
1− 4r2

) (
19− 84r2 + 144r4 − 64r6

)
, (3.7e)

f6(r)= r
3

(
18− 48r2 + 64r4

)
. (3.7f )
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Using the scalings of (3.3) and the asymptotic limits of α � 1 and Re � 1, the
disturbance part of Dean’s solution can be written as

ū′r,D(r, θ)= cos θ f1(r), ū′θ,D(r, θ)=− sin θ f2(r),
ū′z,D(r, θ)= cos θ f5(r), p̄′D(r, θ)= cos θ f6(r).

}
(3.8)

We now linearize about Dean’s analytical solution in a curved pipe as

ur = ur,D + u′r, uθ = uθ,D + u′θ , uz = uz,D + u′z and p= pD + p′. (3.9a−d)

Using this linearization along with the scalings (3.3), the governing equations (3.5)
reduce to exactly the same form as equation (3.4) in the limits α� 1 and Re� 1.
Thus, the developing flow in a curved pipe and the flow downstream of a curved
pipe in a straight outlet can both be represented with the same form of governing
equations, where the linearization is about the fully developed Poiseuille flow for the
flow downstream of a curved pipe, and the linearization is about Dean’s solution for
the developing flow in a curved pipe.

3.3. Vector form
Perhaps a simpler way to see the equivalence between the two flow problems is by
working with the vector forms of the equations. We use the same notations as before,
where z is understood to be the pipe centreline coordinate, which is generally curved,
and r, θ are spatial coordinates on the cross-section. The gradient operator ∇ can be
written as

∇= ez

1+ 2αr cos θ
∂

∂z
+∇⊥ (3.10)

for a pipe with constant curvature, where ∇⊥ corresponds to a gradient in the plane
normal to the pipe axis, i.e. ez· ∇⊥=0. The velocity vector is written u=uD+u′ as in
§ 3.2. We also write u′=u′⊥+ ezu′z. Neglecting terms quadratic in u′, the Navier–Stokes
equations are

uD · ∇uD + uD · ∇u′ + u′ · ∇uD =−∇pD −∇p′ + 1
Re
∇2uD + 1

Re
∇2u′, (3.11)

where uD = up + u′D. We consider only the leading effects of pipe curvature, i.e. we
retain terms up to O(αup) and O(α0|u′|). For α� 1, (3.11) becomes

up
∂u′z
∂z

ez + up
∂u′⊥
∂z
+ u′⊥ · ∇⊥upez =−∇⊥p′ − ∂p′

∂z
ez + 1

Re
∇2u′⊥ +

1
Re
∇2u′zez. (3.12)

The boundary conditions for the flow (§ 3.4) determine that the scaling for the
perturbation must be the same as the scaling for the fully developed flow, which
suggests |u′⊥| = O(αRe), p′ = O(α) and |u′z| = O(αRe2). For the developing flow,
continuity suggests that the flow evolves on a length scale z=O(Re), confirming the
scalings (3.3). Applying these scalings to (3.12) and considering the limit Re � 1
gives

up
∂ū′⊥
∂ z̄
+ up

∂ ū′z
∂ z̄

ez + ū′r
dup

dr
ez =−∇⊥p̄′ +∇2

⊥ū′⊥ +∇2
⊥ū′zez, (3.13)

which is exactly the vector form of (3.4). If the pipe is straight and the flow is instead
linearized about the fully developed Poiseuille flow, (3.13) will be exactly the same;
see § 3.1 for the details. Therefore, both the developing flow in a curved pipe and the
flow downstream of a curved pipe satisfy the same governing equations.
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3.4. Boundary conditions
Next, we consider the boundary conditions for each problem. For the developing flow
in a curved pipe, the flow approaches Dean’s analytical solution, and for the case of
flow downstream of a curved pipe, the flow approaches the fully developed Poiseuille
flow. For both cases, these conditions imply

ū′→ 0 and p̄′→ 0, as z̄→∞. (3.14a,b)

In addition, the no-slip boundary condition at the pipe wall requires

ū′ = 0 at r= 1/2 (3.15)

for both cases.
Finally, we consider the inlet conditions at z̄= 0. As mentioned above, Smith (1976)

analysed the inlet region in a curved pipe for Re� 1 and demonstrated that in order
to solve the O(1) boundary layer problem, a consideration of the upstream influence
is necessary. However, Smith also stated that the upstream influence is practically
negligible in the core, and thus for the O(Re) problem, the inlet boundary condition
is practically the fully developed Poiseuille flow. By analogy, for the case of flow
downstream of a curved pipe, we claim, and verify numerically below, that the inlet
boundary condition should be practically the fully developed curved pipe solution of
Dean. For the developing flow in a curved pipe, we then have

u′ = up − uD and p′ = pp − pD at z̄= 0, (3.16a,b)

while we have

u′ = uD − up and p′ = pD − pp at z̄= 0 (3.17a,b)

for the flow downstream of fully developed curved pipe flow.
Having shown that the developing flow in a curved pipe and the flow downstream

of a curved pipe both satisfy the same governing equations (with the appropriate
linearizations), we now also see that both flows satisfy the same boundary conditions,
up to a factor of −1 in the inlet condition. Thus, the solution to (3.4), subject to
the boundary conditions (3.14), (3.15) and (3.17), simultaneously gives the solution
for both problems. These solutions are strictly valid in the limits D� 1 and Re� 1
(which implies α� 1). The limit D� 1 is required to apply Dean’s analytical solution
(3.6). However, in § 4 we use numerical solutions to show that the solution accurately
predicts transition lengths to within ∼5 % for laminar flows with D6 100 and Re> 50.
We also confirm the scaling arguments by showing that the velocity and pressure
perturbations collapse after rescaling the data with (3.3) for a range of Re and α.

3.5. Separation of variables solution
To begin with, we present additional theoretical considerations that allow an analytical
solution to the governing equations to be developed. The results are achieved with a
combination of symmetry arguments and a separation of variables approach. It should
be noted that the inlet boundary condition (3.17) has the symmetry property that ū′r, ū′z
and p̄′ all have a cos θ dependence, while ū′θ has a sin θ dependence. Due to linearity,
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we assume that the transitioning flow maintains this symmetry condition throughout
its development, and we define new primary variables Ur, Uθ , Uz and P, such that

ū′r(r, θ, z̄)= cos θ Ur(r, z̄), ū′θ(r, θ, z̄)= sin θ Uθ(r, z̄),
ū′z(r, θ, z̄)= cos θ Uz(r, z̄), p̄′(r, θ, z̄)= cos θ P(r, z̄).

}
(3.18)

Now, the governing equations (3.4) become

1
r
∂

∂r
(rUr)+ Uθ

r
+ ∂Uz

∂ z̄
= 0, (3.19a)

up
∂Ur

∂ z̄
=−∂P

∂r
+ 1

r
∂

∂r

(
r
∂Ur

∂r

)
− 2Ur

r2
− 2Uθ

r2
, (3.19b)

up
∂Uθ

∂ z̄
= P

r
+ 1

r
∂

∂r

(
r
∂Uθ

∂r

)
− 2Ur

r2
− 2Uθ

r2
, (3.19c)

Ur
dup

dr
+ up

∂Uz

∂ z̄
= 1

r
∂

∂r

(
r
∂Uz

∂r

)
− Uz

r2
. (3.19d)

Next, Ur, Uθ and P can be eliminated from (3.19), resulting in a partial differential
equation for Uz given by

∂

∂ z̄2

(
u2

p L(rUz)+ 2rup
dup

dr
∂Uz

∂r

)
− ∂

∂ z̄

(
2up L2(rUz)+ 4

dup

dr
∂

∂r
(L(rUz))

)
+L3(rUz)= 0, (3.20)

where L is the linear operator L = r(∂/∂r)((1/r)(∂/∂r)). It should be recalled that
up(r)= 2− 8r2. Examining the structure of (3.20), we assume a solution of the form

Uz(r, z̄)=
∞∑

n=1

anFn(r)e−kn z̄, (3.21)

which results in a sixth-order ordinary differential equation eigenvalue problem for the
eigenvalues kn of the form

k2
n

(
u2

p L(rFn)+ 2rup
dup

dr
dFn

dr

)
+ kn

(
2up L2(rFn)+ 4

dup

dr
d
dr
(L (rFn))

)
+L3(rFn)= 0. (3.22)

Boundedness of pressure and velocity at the origin requires

Fn = d2Fn

dr2
= d4Fn

dr4
= 0 at r= 0. (3.23)

The no-slip condition at the pipe wall (r = 1/2) requires Ur(1/2, z̄) = Uθ(1/2, z̄) =
Uz(1/2, z̄)= 0. In terms of the Fn(r), these conditions require

Fn = 0,
dFn

dr
=−1

2
d2Fn

dr2
and

d2Fn

dr2
=−1

6
d3Fn

dr3
at r= 1/2. (3.24a−c)

Thus, we have a sixth-order ordinary differential equation (3.22) subject to the six
boundary conditions (3.23) and (3.24). A combined Taylor series expansion/shooting
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FIGURE 2. Representative eigenfunctions in the series solution (3.21) to the ordinary
differential equation (3.22) subject to (3.23) and (3.24): (a) F1(r), (b) F3(r), (c) F5(r),
(d) F7(r), (e) F9(r), ( f ) F11(r). Solid lines denote the real parts of the eigenfunctions
(left axis) and dashed lines denote the imaginary parts of the eigenfunctions (right axis).
Here, the eigenfunctions have been renormalized such that the maximum absolute value
of their real part is one.

approach is used to solve the ordinary differential equation (3.22) and is described
in detail in appendix A. The Fn(r) corresponding to the kn with positive imaginary
components are plotted in figure 2, renormalized such that the maximum value of
their real parts is one. It should be noted that eigenvalues and eigenfunctions come
in complex pairs, i.e. {k2, F2(r)} = {k∗1, F∗1(r)}, where the ∗ indicates the complex
conjugate.

Finally, the series coefficients {an} in (3.21) can be determined using the boundary
condition ū′z(r, θ, z̄=0)= cos θ f5(r), which gives Uz(r, z̄=0)= f5(r). In terms of (3.21),
this condition requires

∞∑
n=1

anFn(r)= f5(r). (3.25)

As an orthogonality condition (and weighting function) for the Fn(r) is not
immediately obvious, it is difficult to deduce an analytical expression for the
coefficients an. Instead, we discretize the domain over 0 < r < 1/2 and use a
least-squares approach to find the an; we limit our approach to the first two
eigenfunctions. This provides a sufficiently good fit, as the relative error in
the boundary condition is found to be less than 0.5 %. Furthermore, the higher
eigenfunctions also decay exponentially much more quickly than F1(r) and F2(r) over
the z̄ range of interest. We use least squares to find the a1 and a2 that best satisfy
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FIGURE 3. Entrance lengths, zent, for developing flow in a curved pipe, non-
dimensionalized by d, for various α. The data show a good fit with the theoretical
prediction (4.1) from § 3 for D<O(100). As D increases to O(100), enhanced secondary
flow reduces the entrance length with respect to the theoretical linear relationship for
D� 1. The inset shows the rescaled z̄ent versus D. The maximum relative error between
theory and numerics is less than ∼5 % for D 6 100 and Re > 50.

a1F1(r)+ a2F2(r)= f5(r). Since F2(r)=F∗1(r), and f5(r) is purely real, a1 and a2 must
be complex conjugates, which are found to be a1= a∗2≈ 4.124× 10−4+ 1.810× 10−3i.
Finally, the solution for the axial velocity perturbation is approximately given by

Uz(r, z̄)= a1F1(r)e−k1 z̄ + a2F2(r)e−k2 z̄, (3.26)

where k1 and k2 are given in table 4 in appendix A, and the numerically determined
F1(r)= F∗2(r) are displayed in figure 2. This can be written as

Uz(r, z̄)= 2e−kr
1 z̄
[
sin(ki

1z̄)
(
ai

1Fr
1(r)+ ar

1Fi
1(r)
)+ cos(ki

1z̄)
(
ar

1Fr
1(r)− ai

1Fi
1(r)
)]
, (3.27)

where i and r superscripts denote the imaginary and real parts respectively. In the next
section, we compare the theoretical solution (3.27) with numerical simulation results
of the full Navier–Stokes equations and show that they agree well for Dean numbers
up to D=O(100).

4. Results and discussion
4.1. Transition lengths

In § 3, we identified the velocity, pressure and axial coordinate scalings that reduce
the governing equations (3.1) to a new set of equations and boundary conditions
independent of Re and α in the small-Dean-number large-Reynolds-number limits.
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Flow type Entrance length Source

Entry flow in a straight pipe zent = 0.06Re Fox et al. (2009)
Entry flow in a curved zent = (3.8α + 0.86)Re1/2α−1/4 Yao & Berger
pipe with 0.05<α < 0.3 (1975)
Entry flow in a curved pipe with zent = 0.0975Re Present work
parabolic inlet profile and
D . O(100): theoretical solution
Flow downstream of a curved pipe in a zent = 0.1020Re− 0.2070 Ault et al. (2015)
straight outlet with D . O(100):
numerical correlation
Flow downstream of a curved pipe in a zent = 0.0975Re Present work
straight outlet with D . O(100):
theoretical solution

TABLE 3. Summary of the development lengths related to straight pipes, curved pipes and
transition. Transition lengths are given in number of pipe diameters.

We showed how these governing equations for both the entry and exit problems
can be written in the same form (3.4). Furthermore, we used symmetry arguments
and a separation of variables series approach to develop an analytical solution for
the reduced set of governing equations. In this section, we develop a theoretical
prediction for the transition lengths both in the inlet of a curved pipe section and
in a straight outlet downstream of a curved pipe. We also show that the scaling
arguments successfully collapse the data from our simulations, and we compare
the numerical results with the theoretical solution, showing that it is valid up to
D=O(100).

Since the rescaled equations (3.4) and boundary conditions (3.14), (3.15) and (3.17)
are independent of Re and α, the axial coordinate z̄ent at which the magnitude of a
component of the velocity/pressure perturbation has decayed by 99 % of its inlet value
should be constant for any Re and α (i.e. z̄ent= κ , where κ is a constant). This implies
zent= κRe. This entrance length can be determined from (3.27) by calculating z̄ent such
that |Uz(r, z̄ent)/Uz(r, 0)|max = 0.01, where the maximum is taken on the cross-section.
This gives κ ≈ 0.0975. Thus, the transition length for both the entry and exit problems
(in pipe diameters) is

zent = 0.0975Re, independent of α. (4.1)

A comparison between (4.1) and numerically determined transition lengths for the
developing flow in a curved pipe is shown in figure 3. The data show a good collapse
in the low-Dean-number regime, confirming the linear proportionality of transition
length with Re and supporting the scaling arguments of § 3. As D increases, the
increased secondary flows enhance the flow recovery, reducing the transition length
with respect to the D� 1 theoretical prediction. A summary of proposed development
lengths for straight pipes, curved pipes and transitions is shown in table 3.

4.2. Comparison with linearized theory
In § 3, we demonstrated how the dependence on Re and α can be eliminated from the
equations governing the entry and exit flows in curved pipes. Here, we confirm the
scalings (3.3) using numerical simulations. For α= 2.5× 10−6, 1.0× 10−5, 2.0× 10−5
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FIGURE 4. Maximum magnitude of the numerically computed rescaled axial velocity
component ū′z for the developing flow in a curved pipe versus the rescaled axial coordinate
z̄. Data points are shown for a range of Re and α. The inset shows the unscaled data. The
data collapse when we apply the scalings of (3.3). Here, the Dean number is 0.1<D<1.6.

and 4.0 × 10−5, and for Re ranging from 30 to 200, corresponding to 2.3 × 10−3 <

D < 1.6, the simulations confirm the scaling analysis of § 3. Figures 4–6 show the
velocity and pressure fields for the developing flow in a curved pipe in both scaled
and unscaled variables. The insets show the unscaled data. Axial cross-sections were
taken along the pipe and the physical variables were determined on each cross-section.
For example, figure 4 shows the maximum magnitude of the rescaled axial velocity
|ū′z|max versus the rescaled axial coordinate z̄. Here, the axial velocity perturbation
is rescaled by Re2α, and z is rescaled by Re, collapsing the data. Next, figure 5
shows the maximum magnitude of the rescaled secondary velocity |ū′sec|max, where
|ū′sec|2 = ū′2r + ū′2θ . Since u′r and u′θ scale with Reα, u′sec also scales with Reα, and z
is again rescaled by Re. Once again, the scalings collapse the numerical data. Finally,
figure 6 shows the maximum magnitude of the rescaled pressure perturbation |p̄′|max,
rescaled by α, and z is again scaled by Re. We conclude by noting that the results in
figures 4–6 include cases with D= Re2α=O(1), and the scaling still holds, although
(3.3) was strictly derived in the limit D� 1.

Finally, we compare the flow evolution from our numerical simulations for both
the entry and exit problems with the linearized theoretical solution presented in § 3,
i.e. equation (3.27). Figure 7 shows the numerically computed development of the
axial velocity perturbation for a range of cases up to D = O(100) along with the
theoretically predicted values from the solution given in (3.26). The results show a
good agreement, suggesting that the linearized theory can reasonably capture the flow
development in the curved pipe section for this range of Dean numbers. Figure 8
shows similar results, but for cases with D> O(100), demonstrating that the scaling
arguments and linearized theory break down at sufficiently large Dean numbers. Based
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n kn c3 c5

1 5.736× 101 + 2.165× 101i −1.131× 101 − 8.120× 10−1i 6.032× 101 + 1.137× 101i
3 1.774× 102 + 4.236× 101i −4.430× 101 − 6.003× 100i 6.576× 102 + 1.511× 102i
5 3.610× 102 + 6.514× 101i −8.561× 101 − 5.644× 100i 2.575× 103 + 3.782× 102i
7 6.084× 102 + 8.935× 101i −1.516× 102 − 1.300× 101i 7.639× 103 + 1.196× 103i
9 9.196× 102 + 1.146× 102i −2.243× 102 − 1.227× 101i 1.711× 104 + 2.012× 103i

11 1.295× 103 + 1.408× 102i −3.227× 102 − 2.091× 101i 3.462× 104 + 4.209× 103i

TABLE 4. Eigenvalues kn of (3.22) along with c3 and c5 of the corresponding
eigenfunctions Fn(r), assuming c1 = 1. These values can be used to generate the
eigenfunctions seen in figure 2. It should be noted that kn, c3 and c5 for n= 2 are complex
conjugates of the corresponding values for n= 1. The n= 4, 6, 8, 10, 12 values are likewise
complex conjugates of the n = 3, 5, 7, 9, 11 values respectively. Values are converged to
four digits.
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FIGURE 5. Maximum magnitude of the rescaled secondary velocity component ū′sec for
the developing flow in a curved pipe versus the rescaled axial coordinate z̄. Data points
are shown for a range of Re and α. The inset shows the unscaled data. The data collapse
when we apply the scalings of (3.3). Here, the Dean number is 0.1<D< 1.6.

upon this comparison and the strong agreement between entrance lengths in figure 3,
the linearized flow solution (3.26) can be expected to reasonably approximate the
flow solution in the transition region both in the entry region of a curved pipe and
downstream of a curved pipe in a straight outlet. It should be noted that each case in
figures 7 and 8 shows the presence of axial spatial oscillations. The presence of these
oscillations is clearly anticipated by the sine and cosine terms in (3.27).
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FIGURE 6. Maximum magnitude of the rescaled pressure perturbation p̄′ for the
developing flow in a curved pipe versus the rescaled axial coordinate z̄. Data points are
shown for a range of Re and α. The inset shows the unscaled data. The data collapse
when we apply the scalings of (3.3). Here, the Dean number is 0.1<D< 1.6.

5. Conclusion
We have identified scalings for the asymptotic velocity and pressure fields that

can be used to eliminate all Reynolds number and curvature dependence from the
continuity and linearized Navier–Stokes equations for the pressure-driven flow in the
entry and exit regions of a curved pipe. These results were achieved by linearizing the
Navier–Stokes equations in cylindrical coordinates about fully developed straight pipe
Poiseuille flow and in toroidal coordinates about fully developed curved pipe Dean
flow and applying judicious scalings (3.3), while considering the limits D� 1 and
Re� 1. We confirmed the scalings using three-dimensional Navier–Stokes simulations
of both the entrance flow in a curved pipe and the exit flow downstream of a curved
pipe into a straight outlet. As shown in figures 4–6, the results collapse when the
scalings are applied. The governing equations and scalings have also been used to
show that the transition lengths in both the entry and exit problems must be O(dRe),
independent of α; see (4.1). The prefactor depends on the type of inlet flow condition,
i.e. uniform versus Dean flow.

Berger et al. (1983) suggested that it might be possible to obtain an analytical
solution for the low-Dean-number entry flow problem using a perturbation approach,
although they appear never to have attempted such a solution. Here, we have
developed such a solution using a separation of variables approach to simplify
the governing equations (3.4) to an eigenvalue problem. Finally, we presented a
numerical solution to this eigenvalue problem and showed that the achieved solution
(3.26) agrees well with the results of full 3D numerical simulations up to a maximum
Dean number of D=O(100).

As mentioned in § 3, we have applied Smith’s result (Smith 1976) for Re � 1
that the upstream influence is negligible when solving the O(dRe) entry problem
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FIGURE 7. (Colour online) Comparison of the rescaled numerical simulation results for
both the entrance and exit problems with the linearized theory presented in § 3. The
collapse shows that the linearized theory agrees well with the data up to D = O(100).
Coloured symbols denote results for the developing curved pipe flow (entry problem)
and open (white) symbols denote results for the flow downstream of a curved pipe (exit
problem).

in a curved pipe. We have extended this idea to the outlet problem and assumed
that upstream influence is similarly negligible in the transition from a curved to
a straight pipe, when looking at the O(dRe) region downstream. This approach
allowed us to apply Poiseuille flow as the inlet condition to the curved pipe for the
entry problem, and Dean’s curved pipe velocity profile as the inlet condition to the
straight pipe for the exit problem. The close fit between the theoretical prediction
of this linearized theory and the 3D simulations (figure 7) further confirms Smith’s
conclusion and supports our claim that upstream influence is similarly negligible for
the exit problem.

We have demonstrated an equivalence between the entry and exit problems, such
that by linearizing about their respective fully developed states, both problems can
be written in terms of the same governing equations and boundary conditions (up
to a factor of −1). By the linearity of the equations, these ideas also show that the
solution for developing curved pipe flow is a linear combination of the solution for
flow downstream of a curved pipe and Dean’s analytical solution for fully developed
flow in a curved pipe. Many questions remain to be addressed, especially for flows
with larger Dean numbers and more severe curvature. For example, Smith & Duck
(1980) identified flow structures and solution properties for plane channel flows subject
to severe constriction, curves and corners. In general, these types of problems involve
nonlinear partial differential equations and require numerical solutions, especially in
more complex geometries. We have identified two cases (the entry and exit problems)
in which analytical solutions can be found in the asymptotic limits D� 1 and Re� 1,
and numerically we have shown that these solutions are valid for Re>50 and D6100.
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FIGURE 8. (Colour online) Comparison of the rescaled numerical simulation results for
the entrance (developing) curved pipe flow problem with the linearized theory presented
in § 3. The results show that the linearized theory breaks down above D=O(100).

Based upon the theoretical approach used to obtain these results, it should be possible
to develop a general solution for linearized pipe flow, providing a solution describing
the decay of an arbitrary perturbation in a linearized pipe flow. This subject is left for
a future article.
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Appendix A. Ordinary differential equation solution approach
In this appendix, we provide some details for the analysis presented in § 3.5.

Analysing (3.22) and (3.23), we recognize that Fn(r) is an odd function. We solve
this eigenvalue problem by approximating the Fn(r) as a Taylor series about r = 0,
given by

Fn(r)≈ c1r+ c3r3 + c5r5 + c7r7 + · · · , (A 1)

which automatically satisfies the conditions shown in (3.23). We fix c1 = 1 to
normalize the solutions. Here, the n subscript on the coefficients ci has been dropped,
but it is implicit that each eigenfunction Fn(r) has a unique set of ci. Substitution of
(A 1) into (3.22) yields recurrence relations for the ci, which are given by

c7 = kn(2knc1 + (32− kn)c3 − 24c5)/288, (A 2a)
ci = (Aici−2 + Bici−4 +Cici−6 +Dici−8) /Ei for i> 7 with i odd, (A 2b)
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where

Ai = 4kn(5− i)(i− 3)2(i− 1), (A 3a)
Bi = 4kn[4(i− 5)(i− 3)− kn](i− 5)(i− 3), (A 3b)

Ci = 32k2
n[23+ (i− 10)i], (A 3c)

Di =−64k2
n[31+ (i− 12)i], (A 3d)

Ei = (i− 5)(i− 3)2(i− 1)2(i+ 1). (A 3e)

Each ci can be written in terms of c3, c5 and kn (with c1 = 1), through recursive
back-substitution. Extending this approach to high order, (A 1) can be written in terms
only of c3, c5 and kn. Substitution of this Taylor series into (3.24) at r = 1/2 yields
a set of three equations and three unknowns. In principle, this system can be solved
to yield approximate values of the eigenvalues kn, and the associated values of c3 and
c5. The Fn(r) are then given by (A 1), where each of the ci is uniquely determined
by c3, c5 and kn. In practice, this approach reduces to root-finding with a high-order
polynomial in kn, the solutions of which can be achieved, for example, with a Newton
iteration. With a modest number of terms, this approach provides reasonable guesses
for the first few kn, c3 and c5 corresponding to the first few eigenfunctions.

To improve precision, the Taylor series should be used up to a small value of r,
and a shooting method should be used in the rest of the domain. This effectively
handles the singular behaviour that is expected at r = 0 when solving (3.22), and it
also eliminates the need for a very-high-order Taylor series in order to obtain accuracy
near r = 1/2. We use the Taylor series up to r = 0.1 and use a fourth-order Runge–
Kutta method elsewhere. We find that the results are not sensitive to this cutoff in the
range [0.05, 0.3]. Finally, using the initial guesses for c3, c5 and kn, a minimization
scheme can be used to minimize the error in the boundary conditions (3.24). Using
this approach, we have identified the first 12 eigenvalues kn and eigenfunctions Fn(r).
The kn are given in table 4, along with the corresponding values of c3 and c5. With
c1= 1 and c0= c2= c4= · · · = 0, each Fn(r) can be obtained from these values. Only
the kn with positive real parts are retained to guarantee that the solution (3.21) decays
to 0 as z̄→∞.

Appendix B. Numerical approach

Here, we describe the numerical methods used for the steady developing flow in
a curved pipe, corresponding to the simulation domain shown in figure 1(b,c). For
details on the simulations of the flow downstream of a curved pipe, see Ault et al.
(2015). Here, the velocity vector u has been non-dimensionalized by uavg and lengths
have been non-dimensionalized by d. The incompressible Navier–Stokes equations
were solved with a finite-volume solver adapted from the pimpleFoam solver of the
OpenFOAM library (Weller et al. (1998); additional details are provided in Ault et al.
2015). Spatial derivatives are second-order accurate, and the temporal scheme is fully
implicit and second-order accurate. The average value of |∇ · u| < 3 × 10−12 across
all cells, and time steps are automatically adjusted to maintain a maximum Courant
number of 0.5 in the mesh.

As a validation, we compare the computed fully developed velocity profiles in the
curved pipe section, uFD, with Dean’s analytical velocity profile, uD. We quantify the
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Number of cells zent Relative error (%)

7.5× 105 16.4 9.30
1.5× 106 17.0 6.03
3.0× 106 17.6 2.80
6.0× 106 17.9 1.17
1.2× 107 18.1 —

TABLE 5. Grid convergence results for developing curved pipe flow with α = 2.0× 10−5

and Re= 200. Relative errors are with respect to the 1.2× 107 cell grid. Entrance lengths
zent have been non-dimensionalized by d.

error between the velocity profiles as

error=

∫
Ω

‖uFD − uD‖ dV∫
Ω

‖uD‖ dV
, (B 1)

computed over the domain Ω , where ‖ · ‖ is the L2 norm. Typical values for our
simulations have errors . 10−3, which should approach zero in the limits α� 1 and
D� 1, which are the appropriate limits for Dean’s solution. For our cases of interest,
with D. 1 and α� 1, errors are typically less than 10−3, and Dean’s solution is valid
to within 0.1 % for our flow conditions. A grid convergence study was performed for
the highest Re cases using grids with 7.5× 105, 1.5× 106, 3.0× 106, 6.0× 106 and
1.2 × 107 cells. Table 5 shows the entrance length, zent, for the case α = 2.0 × 10−5

and Re = 200 for each of the grids, where zent represents the non-dimensional axial
location where the axial velocity perturbation has reached 99 % of its final value. The
table also lists relative percentage errors with respect to the finest grid. Steady-state
solutions are achieved by running the solver until∥∥∥∥∂u

∂t

∥∥∥∥= 1
V

∫
Ω

∣∣∣∣∂u
∂t

∣∣∣∣ dV (B 2)

converges to O(10−10). A typical case requires approximately 5 h to run on 64 cores
with 6.0× 106 cells.

B.1. Boundary and initial conditions
At the inlet of the straight pipe (figure 1), we impose the parabolic velocity profile
u = 2

(
1− 4r2

)
ez (White 2005), where ez is the axial direction along the pipe and

r is the radial coordinate from the pipe centre. We also use the consistent pressure
boundary condition (Gresho & Sani 1987) derived from the inlet-normal direction (ez)
of the Navier–Stokes equations, i.e.

n · ∇p= n ·
(
−∂u
∂t
−∇ · (uu)+ 1

Re
∇2u

)
, (B 3)

which for our inlet condition reduces to ∂p/∂z = −32/Re. At the walls, we enforce
the no-slip condition u = 0 and the consistent pressure boundary condition (B 3)

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/jfm.2017.72
Downloaded from https:/www.cambridge.org/core. Princeton Univ, on 08 Mar 2017 at 19:34:56, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2017.72
https:/www.cambridge.org/core


Entry and exit flow in curved pipes 591

derived from the wall-normal direction of the Navier–Stokes equations. Finally, we set
n · ∇u= 0 and p= 0 at the outlet.
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