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Modern inertial microfluidics routinely employs oscillatory flows
around localized solid features or microbubbles for controlled,
specific manipulation of particles, droplets, and cells. It is shown
that theories of inertial effects that have been state of the art
for decades miss major contributions and strongly underestimate
forces on small suspended objects in a range of practically rele-
vant conditions. An analytical approach is presented that derives a
complete set of inertial forces and quantifies them in closed form
as easy-to-use equations of motion, spanning the entire range
from viscous to inviscid flows. The theory predicts additional
attractive contributions toward oscillating boundaries, even for
density-matched particles, a previously unexplained experimen-
tal observation. The accuracy of the theory is demonstrated
against full-scale, three-dimensional direct numerical simulations
throughout its range.

inertial microfluidics | oscillatory flows | particle manipulation

Describing effects of small, but finite, inertia on suspended
particles is a fundamental fluid-dynamical problem that has

never been solved in full generality (1–6). Modern microflu-
idics has turned this academic problem into a practical challenge
through the use of high-frequency (!⇠ kilohertz to megahertz)
oscillatory flows, perhaps the most efficient way to take advan-
tage of inertial effects at low Reynolds numbers, to precisely
manipulate particles, cells, and vesicles without the need for
charges or chemistry (7–9). The systematic theoretical under-
standing of flow forces on particles has so far hinged on the
pioneering work of Maxey and Riley (MR) (10), introduced
almost 40 years ago and encompassing a number of special-
ized approaches (11–13), including acoustic secondary radiation
forces (SRFs) that have been invoked to rationalize observed
attractive forces toward localized features in oscillatory flows
(8, 14–17). However, recent experimental (18) and theoreti-
cal (19) advances have shown that the classical MR theory
falls significantly short of explaining the magnitude of attrac-
tion. We demonstrate here theoretically and computationally
that previously unrecognized, significant forces act toward oscil-
lating boundaries, even on neutrally buoyant particles, stem-
ming from the interplay of particle inertia, flow gradients, and
flow curvature. These forces cannot be understood quantita-
tively or qualitatively by MR (or SRF) and, instead, natu-
rally emerge from a systematic generalization of MR, paving
the way for enhanced and novel inertial microfluidic applica-
tions of great potential benefit in biomanufacturing, health,
and medicine.

Oscillatory microfluidics is usually set up by or past a localized
object [e.g., a microbubble or a no-slip solid (8, 20)], resulting
in spatially nonuniform flows characterized by strong variations
on gradient L� and curvature L length scales. Such flows exert
remarkably consistent and controllable forces on particles and
have been employed with great success for guidance, separation,
aggregation, and sorting (9, 14, 21–25). Nonetheless, it is pre-
cisely this use of localized oscillations in modern microfluidics
that is now pushing the envelope of the MR equation, exposing

its limits in predicting the emergence and magnitude of observed
significant and persistent forces. Here, we provide a thorough
revision of its theoretical foundations, but first, in light of the
importance of this work for applications, we state a major prac-
tical outcome: In any oscillatory background flow field Ū asso-
ciated with a localized object, a density-matched (⇢) spherical
particle of radius ap experiences an attractive force toward the
object. The component of this force along the object-to-particle
connector e takes the explicit form

F� =mf

⌦
a
2
prŪ :rrŪ

↵
F(�) · e, [1]

where mf =4⇡⇢a3
p/3 is the displaced fluid mass and the inner

product represents the interaction of flow gradients and cur-
vatures. Force [1] is steady, resulting from a time average h·i.
The effect of oscillation frequency is quantified by the univer-
sal, analytically derived function F of the Stokes number �.
For harmonic oscillatory flows, �⌘ a

2
p!/(3⌫) and to excellent

approximation F(�) reads

F(�)=
1
3
+

9
16

r
3
2�

, [2]

valid over the entire range from the viscous �⌧ 1 to the invis-
cid �� 1 limits. In practice, [1] moves a particle against its
Stokes mobility along a radial coordinate measuring distance rp

from the localized object, so that the steady equation of motion
becomes simply
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drp

dt
=

F�

6⇡ap⌫⇢
, [3]

with ⌫ the kinematic viscosity of the fluid. For generic flows,
F� < 0, since the amplitude of Ū decays with distance from
the oscillating object, indicating attraction. If an additional
steady-flow component is present, Eq. 3 quantifies the deviation
between particle and fluid motion.

The above equations completely describe the particle dynam-
ics and stem from a rigorous, general formalism developed
below to respond to discrepancies observed experimentally.
Indeed, as illustrated in Fig. 1 A and B, when neutrally buoy-
ant particles of moderate � approach the surface of oscillating
bubbles (cf. refs. 9, 24, 32, and 33), we find evidence of sig-
nificant radial attractive forces, even at a considerable distance
from the bubble. This observation is in direct contradiction to
existing theories such as SRF (8, 14, 16, 18, 19, 22, 23, 26–
31), which either predict no attraction at all or a much too
weak effect (see legend of Fig. 1 and SI Appendix for more
details).

Our goal here is to develop a unifying theory that explains
observations, accounts for particle inertia, and seamlessly spans
the full viscous-to-inviscid operational flow spectrum. Accord-
ingly, we revisit MR (10) and systematically account for
all leading-order terms in particle Reynolds number Rep =
apU

⇤/⌫, with U
⇤ the velocity scale of the background flow. We

then reveal their effect through a specially constructed case:
a bubble of radius ab oscillating in pure volume (breathing)
mode, with a spherical, neutrally buoyant particle placed at an
initial center-to-center distance rp(0). This scenario induces no
rectified (streaming) flow in the absence of the particle (34)
and, therefore, allows for the precise evaluation of the newly
considered disturbance flow effects introduced by the particle
itself. The analysis is complemented by direct numerical sim-
ulations (DNSs) that provide first-principle solutions of flow
field and particle displacement. Fig. 1 C, Upper shows that
the computed oscillatory-flow component closely resembles the
background flow, even in the presence of the particle, while
time-averaging over an oscillation cycle (Fig. 1 C, Lower) reveals
the much richer secondary steady disturbance flow induced by
the particle.

Like MR, we wish to describe the hydrodynamic forces
on a particle centered at rp using only information from
the given undisturbed background flow Ū. We fix a (mov-
ing) coordinate system at rp and nondimensionalize lengths

by ap , times by !�1, and velocities by U
⇤ (using lower-

case letters for nondimensional velocities). A spherical parti-
cle exposed to a known (laboratory-frame) background flow
ū and moving with velocity up (neglecting effects of rotation)
then experiences the effects of the undisturbed flow w(0) = ū�

up and a disturbance flow w(1). Following ref. 10, the latter
obeys

r
2w(1)

�rp
(1) =3�

@w(1)

@t
+Rep f , where [4]

f =w(0)
·rw(1) +w(1)

·rw(0) +w(1)
·rw(1),

with boundary conditions w(1) = up � ū on r =1, and w(1) =0
as r !1.

This equation is exact and does not rely on small Rep . To
obtain explicit results, we use two expansions: One, like MR,
expands the background flow around the particle position into
spatial moments of alternating symmetry:

ū= ū|rp + r ·E+ rr :G+ . . . , [5]

where E=(ap/L�)rū|rp and G= 1
2 (a

2
p/L

2
)rrū|rp capture the

background-flow shear gradients and curvatures, whose scales
are, in practice, much larger than ap , justifying [5].

The other cornerstone of our theory is a regular perturbation
expansion of all variables in [4], using subscripts for orders of
Rep , e.g., w(1) =w(1)

0 +Repw(1)
1 +O(Re2p). In contrast to MR,

this retains a term Rep f 0 in [4], where f 0 =w(0)
·rw(1)

0 +w(1)
0 ·

rw(0) +w(1)
0 ·rw(1)

0 is the leading-order nonlinear forcing of the
disturbance flow. Note also that w (1)

0 is purely oscillatory, while
w

(1)
1 has a nonzero time-average, exemplified by the flow in Fig.

1 C, Lower.
Forces on the particle, as integrals of the fluid stress tensor

over the particle surface Sp are also expanded in this fashion.
Application of a reciprocal theorem (cf. ref. 2) formally yields
the inertial force components as volume integrals over the entire
fluid domain without the need to explicitly compute the flow
field at that order. The reciprocal theorem employs a known test
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Fig. 1. Particle attraction to oscillating bubbles. (A) A polystyrene particle (ap = 10µm, �⇡ 4) is transported past an oscillating microbubble (ab = 40µm,
!/(2⇡) = 20 kHz). (B) Close-up of the experimental trajectory (red) of a neutrally buoyant particle intersecting streamlines (blue), indicating a net attraction
toward the bubble over fast time scales of a few milliseconds, unexplained by existing theories: Inertial particle migration due to shear gradients (4, 26,
27) is far slower; the SRF of acoustofluidics (22, 28–31) is proportional to the particle–fluid density contrast and thus vanishes here; an ad hoc theory for
nearly inviscid flows (�� 1) from ref. 19 predicts an attraction much too weak to explain observations. A detailed discussion of this particular experiment
in the context of our analysis is provided in SI Appendix. (C) Simulation of the prototypical problem: a particle exposed to the flow of a bubble oscillating
in volume mode at relative amplitude ✏. (C, Upper) Instantaneous streamlines (color bar is flow speed in units of U⇤). (C, Lower) Time-averaged streamlines
(color bar is steady-flow speed in units of ✏U⇤).
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flow u0 = u
0(t)e in a chosen direction e. The component of the

equation of particle motion in that direction, to O(Rep), is then

mp
dUp

dt
=F

(0)
0 +F

(1)
0 +Rep(F

(0)
1 +F

(1)
1 )+O(Re2p), [6a]

F
(0)
0 =

FS

6⇡

Z

V

(3�@t ū)· edV , [6b]

F
(1)
0 =

FS

6⇡
L

�1

(Z

Sp

�
ûp � ˆ̄u

�

û 0 · (�̂0
· n)dS

)
, [6c]

F
(0)
1 =

FS

6⇡

Z

V

(ū ·rū)· edV , [6d]

F
(1)
1 =�

FS

6⇡
L

�1

⇢
1
û 0

Z

V

û0
· f̂ 0dV

�
, [6e]

where �0 is the stress tensor of the test flow, hats denote Laplace
transforms, and L

�1 their inverse. All dimensional forces have
the common Stokes drag scale FS/6⇡= ⌫⇢apU

⇤.
Eqs. 6b and 6d are forces exerted by the background flow,

while Eqs. 6c and 6e stem from the disturbance flow. The origi-
nal MR equation contains F (0)

0 and F
(1)
0 , but only part of F (0)

1 ,
while the particle inertia force F

(1)
1 has not been described pre-

viously. We shall show that these unrecognized contributions are
not small corrections, but are dominant in relevant applications,
particularly the inertial disturbance force F

(1)
1 .

Results
The outlined formalism is entirely general for arbitrary back-
ground flows and provides analytical expressions for the forces
F

(0)
1 and F

(1)
1 . The former straightforwardly reads

F
(0)
1

FS
=

4
9
(E :G)· eF (0)

1 , [7]

where F
(0)
1 =1/5 (35).

The force F
(1)
1 , by contrast, is generally composed of various

contributions involving the expansion coefficients of Eq. 5; cf.
Materials and Methods and SI Appendix. However, it simplifies
greatly in oscillatory background flows that are potential: This
condition is fulfilled in almost all cases, requiring only that the
distance hp between the particle and object surfaces is greater
than the Stokes boundary-layer thickness �S =

p
2⌫/!, which

simplifies to the easily satisfied condition �& (ap/hp)
2. Then,

the only way to construct a force vector from a contraction of
the higher-rank tensors E and G is E :G (cf. refs. 36 and 37). If,
furthermore, the particle is neutrally buoyant, the slip velocity us

vanishes, and we obtain

F
(1)
1

FS
=

4
9
(E :G)· eF (1)

1 (�), [8]

where the function F
(1)
1 (�) is determined analytically (see SI

Appendix for details) and is universal, i.e., valid for arbitrary
flow fields. While both Eqs. 7 and 8 need nonzero gradient and
curvature terms of the background flow, F (1)

1 (�) captures the
nonlinear effect of inertia of the leading-order unsteady distur-
bance flow w(1)

0 on the particle. For micrometer-size particles,
where �⇠ 1, F (1)

1 is considerably larger than F
(0)
1 , so that Eq. 8

is the dominant effect in practical microfluidic applications. The
sum of both contributions Eqs. 7 and 8 results in the dimensional
force Eq. 1, before time-averaging.

We now turn to the prototypical oscillatory flow example of
Fig. 1C. This flow field’s unique scale is the bubble radius (L� =
L = ab). With an oscillation amplitude of ✏ab (✏⌧ 1 in practi-
cal situations), the velocity scale is U ⇤ = ✏ab!, and we anticipate
the relevant rectified (time-averaged) force to lead to irreversible
particle motion proportional to ✏2 (cf. ref. 19). It is advantageous
to change the length scale to ab here, introducing ↵⌘ ap/ab ,
and to change the coordinate origin to the bubble center, so that
the background flow has only one component ū =sin t/r2 in the
direction e= er . The oscillatory forces and the particle motion
now follow explicitly (Materials and Methods).

Our ultimate goal is to predict the rectified trajectory of the
particle after time-averaging over the fast oscillatory time scale,
to provide practically useful guidance for precision applications.
Time-scale separation using the slow time T = ✏2t analogous
to ref. 19 (Materials and Methods) obtains the leading-order
equation for the rectified particle motion rp(T )

drp

dT
=�

6
r7p

↵2�F(�), [9]

where F(�)=F
(1)
1 (�)+F

(0)
1 . Eq. 9 is readily solved analytically

and is analogous to the result Eq. 3. Indeed, while the analytical
form of the universal function F

(1)
1 is complicated (SI Appendix),

one can Taylor expand in both the viscous limit (�! 0) and the
inviscid limit (�!1) to obtain

F
v =

9
16

r
3
2�

+O(1), F
i =

1
3
+O(1/

p

�). [10]

The simple sum of these leading terms yields the uniformly valid
expression [2] for the total dimensionless force F(�) on the par-
ticle. Note that our derivation is based fundamentally on the
presence of both viscous and inertial effects, so that even F

v is
a finite-inertia force. Its ��1/2 scaling for small � is reminiscent
of Saffman’s lift force (38), but is obtained without decompos-
ing the domain into viscous and inertial regions (Materials and

Methods). Remarkably, the opposite limit F i exactly asymptotes
to the result obtained from the purely inviscid formalism of ref.
19 as �!1.

We now demonstrate that Eq. 2 is accurate over the entire
range of Stokes numbers by comparing our theory with indepen-
dent, large-scale, three-dimensional (3D) numerical simulations,
previously validated in a variety of streaming scenarios (39, 40).
Fig. 2 A–E illustrate the rich time-averaged flow hwi at different
�, while Fig. 2 G and I exemplify the expected confinement of
vorticity around the particle. The simulations also serve to jus-
tify our omission of an inertia-dominated outer region (Fig. 2 F

and H). In Fig. 3A, we compare analytical and simulated particle
trajectories on both the oscillatory and slow time scales. The clas-
sical MR equation fails to capture any of the attraction observed
in DNS, while the present theory is in excellent agreement both
for the instantaneous motion and the rectified drift of the parti-
cle. Moreover, it succeeds over the entire range of � values; cf.
Fig. 3 B–E. In the figure, we also see that the inviscid formalism
of ref. 19 (dashed lines) gives a much too weak attraction, partic-
ularly for practically relevant �⇠ 1. This is an intuitive outcome
of taking viscosity into account, as the Stokes boundary layer (cf.
Fig. 2 G and I) effectively increases particle size, so that forces
scaling with particle size (cf. Eq. 1) become larger. Fig. 3 also
illustrates the great benefit of the analytical theory Eq. 9, as indi-
vidual DNSs incur large computational costs of up to ⇠ 100,000
core-hours on the Stampede2 supercomputer (SI Appendix).

Fig. 4 summarizes the comparison between theory and sim-
ulations: Time-averaged DNS trajectories (beyond an initial
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Fig. 2. Flow-field simulation results. (A–E) Streamlines of the steady flow hwi= hw(1)
i (Stokes streamfunction isolines) for different �; color bar is velocity

magnitude in units of ✏U⇤. (F and H) The magnitude of Fourier-transformed quantities (indicated by tildes) evaluated at the driving frequency ! demon-
strates that the flow field has no outer, inertia-dominated region. The ratio between oscillatory disturbance flow advective force f̃(!) and the Fourier
component of the unsteady inertia @w(1)/@t remains small away from the bubble. (G and I) The Fourier component of vorticity at ! is confined to the
oscillatory Stokes layer thickness �S (orange-dashed circle) around the particle.

transient—see SI Appendix for details) for different values of
� were fitted to [9] to determine the dimensionless force F .
Our analytical predictions are in quantitative agreement with
DNS across the range of �, exhibiting an average error of ⇡ 7%.
This remaining discrepancy is attributed to effects of the nar-
rowing distance between particle and bubble interface, which
modifies the integration volume in Eq. 6e and also compromises

the assumption of purely radial flow at the bubble interface, due
to the particle disturbance flow.

Discussion
The data presented above demonstrate that particle motion can
be described quantitatively by the forcing terms of Eqs. 7 and 8. It
is furthermore important to show that other hydrodynamic force
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Fig. 3. Comparison of theoretical (red) and simulated (blue) particle dynamics (radial displacements). (A) Full unsteady dynamics (solid lines) from DNS and
theory Eq. 13 and time-averaged dynamics (dashed lines; theory uses Eq. 9 with Eq. 2). The classical MR equation solutions (green) fail to even qualitatively
capture the particle attraction to the bubble. (B–E) Steady dynamics from the uniformly valid asymptotic theory agrees with DNS for the entire range of �
values. Dashed lines show the inviscid-limit theory, demonstrating significant quantitative discrepancies, even for the largest �.
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Fig. 4. Comparison of the overall inertial force magnitude F in theory
(lines) and simulation (symbols), for various � and initial particle positions
rp(0). The uniformly valid expression (red) is extremely close to the full
solution (orange) and in excellent agreement with all DNS data, while the
inviscid theory (black dashed) severely underestimates the forces.

contributions will not alter or overwhelm the effects described
here.

Absence of Outer-Flow Inertia. Often, the evaluation of forces on
particles in a flow is complicated by the transition between a
viscous-dominated inner flow volume (near the particle) and
an inertia-dominated outer volume, necessitating an asymptotic
matching of the two limits [such as for the Oseen (2) and Saffman
(38) problems]. The present formalism, however, only employs
an inner-solution expansion and still obtains accurate predic-
tions (see also ref. 5, where it is shown that such an expansion
is successful, even up to Rep ⇠ 10). This behavior can be ratio-
nalized by invoking the analysis of Lovalenti and Brady (2), who
showed that an outer region is not present when the charac-
teristic unsteady time scale !�1 is shorter than the convective
inertial time scale ⌫/(U ⇤

w
(0))2, where w

(0) is the dimensionless
velocity scale of the fluid, as measured in the particle reference
frame. For density-matched particles, w (0) =O(↵), so that this
criterion reduces to ✏2�⌧ 1, requiring the oscillation amplitude
of the flow to be smaller than �S↵

�1, which is easily satisfied
in most experimental situations. More directly, the Lovalenti–
Brady criterion relies on the magnitude of oscillatory inertia in
the disturbance flow @w(1)/@t being much larger than that of the
advective term f . DNS verifies that this relation holds for the
entire range of � treated here (Fig. 2 F and H). In flows that
do not satisfy this condition, our theory can be applied to both
the inner and outer regions, with matching expansions in particle
Reynolds number. As a separate effect, outer flow inertia due to
the slow (steady) motion of the particle will be present, but only
results in O(✏) corrections to the Stokes drag.

Comparison with Other Hydrodynamic Forces. We have investi-
gated the case of radially symmetric flow specifically because
it isolates the inertial forces reported here as the only effect,
allowing us to assess the accuracy of the theory. In more gen-
eral flow situations, other forces will compete with F�, and
we estimate their relative magnitude here to show that in many
practical scenarios, they will not overwhelm the contributions
identified here. If the particle density ⇢p does not match ⇢, a
density contrast force (19) is induced, generalizing acoustoflu-
idic SRFs. This force is included within our general formalism,
but in order for it to exceed F�, the density contrast needs to ful-
fill ⇢p/⇢� 1& 3(ap/rp)

2(1+ 2/
p
�). Appreciable forces only act

when rp & ab and if � is not very small; thus, ⇢p/⇢� 1& 0.3 for

typical geometries characterized by ↵. 0.2. In most microfluidic,
and certainly in biomedical, applications, the density contrast
is far less: Even at 5% density difference (e.g., for polystyrene
particles), F� is 5 to 30 times stronger than the density con-
trast force for 0.5<�< 5. Other forces result from steady flows:
Oscillation of an ab-sized object will generically induce steady-
streaming flow at speed ⇠ ✏2abU

⇤, and it may have transverse
gradients of scale ab (in addition to radial gradients). This sit-
uation induces a Saffman lift force LS (38) for particles with
finite slip velocity Vs , again because of density mismatch (2,
19). Augmenting our theory with an outer-flow inertial region
would reproduce this force.† LS and F� are of equal magnitude
if Vs ⇠ 5↵2(4.1+2

p
�)U ⇤. In realistic settings, Vs would need

to exceed U
⇤, implying that the steady flow would overwhelm

the oscillatory motion, defeating the purpose of oscillatory-flow
microfluidics. Lastly, flows with finite r

2Ū give rise to Faxén
terms in added mass and drag. However, the oscillatory flows
discussed here are (almost) potential flows, as shown above, so
that the leading-order effect of Faxén terms comes from steady-
flow curvature and provides only an O(↵2) correction to the
steady-flow Stokes drag.

Conclusions. We thus conclude that the inertial force terms
described here are not a small correction, but the dominant
effect in many commonplace oscillating microfluidics applica-
tions, in particular for nearly density-matched particles, the most
relevant case in medicine and health contexts, where biologi-
cal materials are primary targets. These forces are ubiquitous in
viscous flows with finite inertial effects from oscillatory driving;
they stem from flow gradients and curvatures; they are attractive
toward the oscillating object under mild assumptions; and they
are much stronger than inviscid forces. They lead to significant
displacements of cell-sized particles (1� 10µm) over millisecond
time scales, making them a promising tool for precision manip-
ulation strategies. Further, our analysis shows that a surprisingly
simple expression accurately predicts particle motion, as quanti-
tatively confirmed against first-principle, large-scale DNSs. The
theory highlights the immense reduction in computational effort
between DNS and an explicit analytical theory and, as a gener-
alization of the Maxey–Riley formalism, is applicable to a wide
variety of flow situations.

Materials and Methods
General Solutions and the Reciprocal Theorem. The leading-order oscillatory
disturbance flow field w(1)

0 is obtained by inserting Eq. 5 into the leading
order of Eq. 4 and can be formally expressed as a series solution (41, 42).

w(1)
0 =MD · us �MQ · (r · E)�MO · (rr : G)+ . . . , [11]

where us = up0 � ū|rp0
is the slip velocity and MD,Q,O(r, �) are spatially

dependent mobility tensors independent of the particular background
flow—SI Appendix gives explicit expressions in the case of harmonic oscilla-
tory flows, though the formalism applies for general flows. All information
about the specific background flow is contained in the constant quantities
us, E, and G. The O(Rep) flow field w(1)

1 does not need to be com-
puted explicitly; instead, we use a reciprocal theorem. Denoting Laplace-
transformed quantities by hats, application of the divergence theorem
results in the following symmetry relation:

I

S
(ŵ(1)

1 · �̂0
� û0

· �̂(1)
1 ) · m dS =

Z

V

h
r · (ŵ(1)

1 · �̂0) �r · (û0
· �̂(1)

1 )
i
dV.

[12]
As shown in SI Appendix, the above expression yields the O(Rep)
force on the particle captured by Eq. 6e. We note that the compu-
tation of the volume integral simplifies considerably: The integrand is
proportional to f0, in which only certain products are nonvanishing
when the angular integration around the particle is performed. For

†We thank H. A. Stone, J. F. Brady, and P. M. Lovalenti for pointing this out.
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instance, the first term in f0 is
�
ū � up0

�
·rw(1)

0 =(�us + r · E + rr : G)·
r (MD · us �MQ · (r · E)�MO · (rr : G)). Due to the alternating symmetry
of terms in the background flow and, consequently, w(1)

0 , only products
of adjacent terms survive integration, while, e.g., a term involving us ·

r (MD · us) vanishes after volume integration.

Oscillatory Equation of Motion in Radial Flow. For the special case of the
bubble executing pure breathing oscillations with the radial flow field
ū = sin t/r2, it is straightforward to compute E : G · er =�18 sin2 t/r7

p, where
rp(t) is the instantaneous particle position.

Using [6], [7], [8], and noting ↵Rep = 3✏�, the nondimensional equation
of motion for rp(t) of a neutrally buoyant particle explicitly reads:

�
d2rp

dt2
= ✏�

 
cos t

r2
p

� 2✏
sin2 t

r5
p

!
�

2�
3

✏2↵2 18 sin2 t
r7
p

F
(0)

+

"
sin t
r2
p

�
drp

dt

#
�

"
2�
3

✏2↵2 (18 sin2 t)
r7
p

F
(1)
1 �

#
, [13]

where the first line on the right-hand side represents contributions from F(0)
0

and F(0)
1 , while the first and second terms in brackets represent F(1)

0 and F(1)
1 ,

respectively. Note that, for neutrally buoyant particles, the time-periodic
character of the flow precludes memory terms that would otherwise emerge
from the inverse Laplace transforms (2, 10, 43).

Time-Scale Separation and Time Averaging. Assuming ✏⌧ 1, we introduce
the slow time T = ✏2t, in addition to the fast time t. Using the following
transformations

rp(t) 7! rp(t, T), [14a]

d
dt

7!
@

@t
+ ✏2 @

@T
, [14b]

d2

dt2
7!

@2

@t2
+ 2✏2 @2

@t@T
+ ✏4 @2

@T2
, [14c]

we seek a perturbation solution in ✏ of the general form rp(t, T) = rp(T) +
✏řp(t, T) + ✏2ˇ̌rp(t, T) + . . . and separate orders in Eq. 13. The procedure is
outlined in ref. 19 and results in a leading-order equation for rp(T) given
by Eq. 9, dependent on the slow time scale only (the scale t being averaged

out). Higher-order corrections to the irreversible, rectified particle motion
only occur at O(✏4).

Simulation Method and Numerical Implementation. Here, we briefly describe
the governing equations and numerical technique used in our simulations.
We consider two spherical bodies (an oscillating microbubble and a neutrally
buoyant particle) immersed in an unbounded domain of incompressible vis-
cous fluid. We denote the computational domain as ⌦=⌦f [⌦B, where ⌦f
is the fluid domain and ⌦B =⌦b [⌦p is the domain in which the bubble
(⌦b) and particle (⌦p) reside, and denote the interface between the fluid
and the bodies as @⌦B. The flow is then described by the incompressible
Navier–Stokes equations

r · u = 0,
@u
@t

+(u ·r)u=�
1
⇢
rp + ⌫r2u x 2⌦ \⌦B, [15]

where ⇢, p, u, and ⌫ are the fluid density, pressure, velocity, and kinematic
viscosity, respectively. We impose the no-slip boundary condition u = uB at
@⌦B, where uB is the body velocity, and feedback from the fluid to the body
is described by Newton’s equation of motion. The system of equations is
solved in velocity–vorticity form by using the remeshed vortex method com-
bined with Brinkmann penalization and a projection approach (44). This
method has been extensively validated across a range of fluid–structure
interaction problems, from flow past bluff bodies to biological swimming
(44–48). Recently, the accuracy of this method has been demonstrated
in rectified flow contexts as well, capturing steady streaming responses
from arbitrary shapes in two dimensions and 3D (39, 40). More details
on method implementation and simulation techniques can be found in
SI Appendix.

Data Availability. All study data are included in the article and/or SI
Appendix.
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