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ABSTRACT: Wicking of fluid in paper-based microfluidic devices
can be greatly enhanced by engineering macroscopic grooves into
the surface of the paper. We developed a quantitative model of this
enhancement by resolving the coupled flow in the paper matrix
and the groove. While the groove enhances wicking by providing a
low-resistance conduit for flow, we find that the degree of
enhancement depends strongly on the poorer wettability of the
groove as well as the effect of gravity. We obtain an analytical
prediction of imbibed length as a function of time, generalizing the
Lucas−Washburn law to microporous wicks with engineered
macroscopic surface grooves. The prediction is shown to be in
quantitative agreement with previous experiments of upward
wicking in both single- and multigrooved paper channels. The
model also rationalizes the experimental finding that wide grooves may slow down imbibition despite their larger cross-sectional area
and, thus, identifies optimal groove widths.

■ INTRODUCTION
Paper-based microfluidic devices have undergone substantial
development since their resurgence in 2007,1 driven by their
ease of fabrication, low-cost materials, user-friendly operation,
and versatility as a sensing platform.2,3 These devices operate
by using capillary forces to wick fluid and analytes through the
pore spaces of a thin strip of paper. The simplest devices
involve predominantly one-dimensional flow with simple
enzymatic and colorimetric reactions at the end1 or along
the length of a strip.4 However, devices require more
sophisticated fluid handling to perform more complex chemical
reactions, necessary for increased sensitivity, and to target a
wider range of analytes. For example, the enzyme-linked
immunosorbent assay (ELISA) involves sequential deliveries of
the sample, reagents, and a wash buffer at timed intervals to
maximize the detection signal while minimizing the back-
ground noise.5 These chemistries often require repeated
manual intervention. Automating these steps necessitates a
quantitative understanding and control of fluid flow in paper.

Capillary imbibition in porous media, such as paper, is
classically described by the Lucas−Washburn (LW) equation,6

which models the paper as a bundle of capillary tubes of some
effective diameter. The model balances the driving capillary
pressure with viscous resistance to flow, predicting that the
location of the fluid front grows with the square root of the
time. Although the LW framework is simple to use, it does not
fully capture the complexities of many practical paper
microfluidic devices, motivating the development of more
detailed models that address the effects of evaporation and

ambient relative humidity,7−9 non-uniform channel geo-
metries,10−13 swelling fibers,14−16 multiple layers of
paper,17−20 and even backing materials.21−23 Other work,
focusing on model porous media, has studied the effects of
inertia and contact-angle dynamics,24 the role of open versus
closed channels,25,26 and the wicking of non-Newtonian27 and
multiphase28 fluids.

Of particular interest to this work is imbibition in multiscale
porous media, which comprise a microporous matrix that
contains larger macroporous features. Examples in the context
of paper microfluidics include multi-ply paper channels
separated by macroporous gaps17−20 as well as paper channels
with grooves cut along their length.29−31 These systems exhibit
faster wicking than in unmodified paper channels due to the
lower hydraulic resistance of the macroporous features,
presenting opportunities for flow control. To understand
these behaviors, models based on an area-averaged LW law17

and resistor networks,32 which weigh the effective diameters of
the paper matrix and gap, have been proposed. While these
approaches offer an explanation of accelerated wicking in
horizontal channels, they overpredict wicking rates in vertical
multi-ply devices as well as grooved paper channels. A
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significant theoretical advance for multi-ply channels is due to
Schaumburg and Berli,19 who recognized that gravity limits
wicking in the macroporous gap, even though it is negligible
within the microporous matrix. Their modeling framework
couples the flows in the gap and the matrix, resulting in a
nonlinear system of equations that was solved numerically.

We build on the advances of Schaumburg and Berli,19

generalizing it to grooved channels and developing new
physical insight. We show that, in practical systems, the
coupled system of equations governing the flow at the
microporous (paper matrix) and macroporous (groove) scales
reduces to an analytical prediction for the location of the fluid
front as a function of time. This generalizes the LW law to
multiscale porous media, accounting for gravity, the inclination
angle, and the effect of the groove. The theory recovers
previous experimental data for upward wicking with single and
multiple grooves, including the observation that the rate of
wicking depends non-monotonically on the groove width. We
also show that, with a negative angle, the introduction of a
groove can lead to wicking that is linear in time, beating the
LW behavior. The simplicity of the main theoretical result is
expected to provide a useful framework for the design of
microfluidic devices that can be further adapted to more
complex configurations.

■ MODEL
We consider the imbibition of liquid into a strip of porous material
(paper), into which a narrow groove is etched by removing material
(Figure 1). The front and back faces of the grooved paper strip are

either exposed to the atmosphere or are covered by an impermeable
backing material (such as an adhesive tape) as is common in paper-
based microfluidic devices to provide structural stability and minimize
evaporation.21−23 The strip of paper has width wp and thickness dp
and is characterized by pores of typical radius rp occupying a volume
fraction ϕ. The groove has width wg and depth dg ≤ dp. The base of
the strip is introduced to a reservoir of liquid (density ρ and viscosity
μ) at an angle α relative to the horizontal, causing the liquid to wick
into the porous matrix and the groove.

The imbibed liquid column lengths in the groove and paper matrix
are lp,g(t). Surface tension γ at the curved air−liquid interfaces
produces capillary pressures −Pp,g = −2γκp,g, where κp,g is the mean
curvature of the meniscus in the respective medium. Note that

rp p
1, while wg g

1 or dg
1; therefore, Pp ≫ Pg for the

practically relevant case of small pores. Consequently, the liquid in the
paper matrix leads to the liquid in the groove (lp > lg) after initial
transients. The opposite situation would entail a meniscus with a
greater negative pressure (in the paper matrix) lagging behind a
meniscus with a less negative pressure (in the groove). Such a
configuration is dynamically unstable and would rapidly equilibrate
with the one shown in Figure 1.

In most applications, the imbibed lengths are much longer than the
width or thickness of the paper. Then, the fluid pressure varies
primarily along the length of the paper (z), while variations across the
width and thickness of the paper strip are small. The inertia of the
flow in the microporous paper is negligible; therefore, the flow in the
paper matrix is governed by Darcy’s law, with permeability k rp p

2.
The liquid level in the groove grows like l tg at early times
(Figure 2), so that, in typical experiments, the Reynolds number in
the groove, Reg = ρw(dlg/dt)/μ falls below unity for t ≳ 0.5 s. Thus,
on time scales of interest in experiments (a few minutes), the liquid
column in the groove is slender (lg/wg ≪ 1) and inertia is negligible
Reg ≪ 1. Under these conditions, the flow in the groove is quasi-
parallel, so that the area-averaged z velocity in the groove is also
governed by an effective Darcy’s law with permeability kg that
depends on its cross-sectional geometry.33

Accounting for gravity, the area-averaged longitudinal velocity in
either medium, vp,g, is governed by

=v
k p

z
g sinp,g

p,g i
k
jjjj

y
{
zzzz (1)

where p(z,t) is the pressure; note that gravity resists flow for α > 0.
The volumetric fluxes in the paper and the groove are ϕApvp and Agvg,
respectively, where Ag = wgdg and Ap = wpdp − wgdg are the cross-
sectional areas of the two media. The total volumetric fluid flux is
therefore q = vgAg + ϕvpAp in the region z < lg (both the paper and the
groove are wet) and q = ϕvpAp for lg < z < lp (only the paper is wet).
Mass conservation demands that q does not vary with z; therefore, we
conclude from eq 1 that ∂p/∂z is a constant in each region. With
enforcement of the atmospheric pressure at the reservoir and capillary
pressures at the two menisci, we find that the pressure distribution is
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The pressure distribution predicted by eq 2 is sketched in Figure 1,
and it indicates that the pressure gradient ∂p/∂z is discontinuous at z
= lg. Consequently, the flux in the paper matrix, ϕApvp, is smaller when
z < lg (smaller pressure gradient) and becomes larger for z > lg (larger
pressure gradient). The jump in flux in the paper across z = lg is
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This excess flux occurs because fluid is entrained from the groove into
the paper at z = lg due to the greater (negative) capillary pressure in
the porous matrix. Mass conservation in the groove requires that flux
at the groove’s meniscus equals the flux entering the groove from the
reservoir minus the flux lost to the paper, leading to the velocity at the
groove meniscus = | = |= =l t v v q Ad /d /z l zg g g 0 e gg

. The velocity at
the paper meniscus is straightforward, = | =l t vd /d z lp p p

. Using eqs 1
and 2, these relations yield a coupled pair of nonlinear differential
equations for the imbibed lengths in the porous matrix and the groove

=
l

t

k P P

l l
g

d

d
sinp p p g

p g

i
k
jjjjjj

y
{
zzzzzz (4a)

Figure 1. A strip of paper with a narrow groove running through its
length wicks liquid from a reservoir. The front and back surfaces of
the paper are either exposed to air or may be covered by an
impermeable backing material.
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The paper wicks fluid from both the reservoir and the groove, while
the groove wicks fluid from the reservoir and loses some of it to the
paper.

For typical microfluidic applications involving centimeter-scale
imbibition lengths, the capillary pressure in the paper matrix is much
greater than the hydrostatic pressure due to the small pores of the
paper. Gravity in eq 4a serves to establish the capillary rise height in
the paper, but this is so large (several meters) that it is irrelevant in
paper-based microfluidics. However, gravity may be important in the
groove, whose capillary pressure is much smaller than that in the
paper (Pg ≪ Pp). In particular, the capillary rise height in groove ∝Pg/
(ρg) can be on the order of a centimeter, which is within the range
relevant to practical microfluidics. We therefore neglect gravity in eq
4a while retaining it in eq 4b and also approximate Pp − Pg ≈ Pp.

With these approximations, we recover the model of Schaumburg
and Berli.19 While those authors solved the coupled system
numerically, we find new insights here by developing an analytical
theory. We first observe that the hydrostatic pressure becomes
comparable to the capillary pressure in the groove at a characteristic
length, lc = Pg/|ρg sin α| (for α > 0, lc is the capillary rise height in the
groove). The characteristic time to wick this length through the paper
matrix is = =t l k P P g k P/( ) /( sin )c c

2
p p g

2 2 2
p p

2 . We use these
scales to define dimensionless time and liquid column lengths
(uppercase)

= =T
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(5a)

and
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Then, the rescaled form of eq 4 is
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where

= = =
k P

k P

A k P

A k P
, , and sgn(sin )

g g

p p

g g g

p p p (7)

are dimensionless parameters. Here, is a ratio of characteristic flow
velocities in the groove and the paper, and Λ is the ratio of volumetric
fluxes. The parameter Γ captures the effect of gravity: it is +1 when
the wicking is upward (α > 0), −1 when it is downward (α < 0), and 0
when it is horizontal. For a groove of roughly square cross-section, the
capillary pressures are Pp ∝ γ/rp and Pg ∝ γ/wg, while the
permeabilities are k rp p

2 and k wg g
2. Then, the velocity ratio

w r/g p is large, while the flux ratio w r w/( )g
2

p p is moderate
due to the combination of a highly permeable but narrow groove and
a less permeable but wider porous matrix. For a millimeter-wide strip
of paper with micrometer-size pores and a 100 μm wide groove, we
estimate = O(100) and Λ between 1 and 10. The characteristic
length lc is a centimeter, while the characteristic wicking time tc is
about 30 s.

Enhanced Lucas−Washburn Law for Grooved Paper
Channels. In the practically relevant limit of 1, the left-hand
side of eq 6b, L T(d /d )1

g , becomes negligible. Thus, almost all of
the fluid drawn from the reservoir by the groove is quasi-statically lost
to the paper matrix due to the extremely high permeability of the
groove. This reduces eq 6b to an algebraic equation, which relates Lg
to Lp by

+ +L U U2 4
2g

2

(8)

where we have defined

Figure 2. Evolution of Lp(T) and Lg(T) for different Λ from numerical solutions of eq 6 with = 100 (symbols), the implicit solution (eq 11)
(solid curves), and the approximation (eq 12) (dashed curves). The legend indicated in panel c applies to all panels. Closed (open) symbols
represent Lp (Lg). (a and d) Horizontal wicking (α = 0). The liquid length in the paper and the groove grow like +L T2(1 )p and

+L T2 /(1 )g
2 . (b and e) Upward wicking (α > 0). At long times, the liquid length in the groove saturates (Lg ∼ 1), while the length in the

paper grows as +L T1 2p . (c and f) Downward wicking (α < 0). The liquid length in both the groove and the paper grow linearly in time as
Lp,g ∼ ΛT. Panels d−f show the data for Λ = 5 on logarithmic axes, indicating behaviors at long and short times.
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= +U T L T( ) 1 ( ( ) 1)p (9)

Substituting the above result with eq 6a produces a single differential
equation for U(T)

=
+ +

U
T U U

d
d

2

4 2

2 2

2 (10)

We solve eq 10 with the initial condition Lp|T=0 = 0 (equivalently,
U|T=0 = 1 − Λ) to obtain an implicit solution for the time T in terms
of U

= + + +

+ + +

T U U U

U U
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which relates T to both Lg and Lp through eqs 8 and 9.
To develop an explicit solution of the form Lp,g(T), it is necessary

to invert the transcendental eq 11. To this end, we analyze eq 11
separately at early times (T, Lp,g ≪ 1) and late times (T, Lp,g ≫ 1)
and construct a generalized Pade ́ approximant that captures both
limits. This procedure yields

+ + +
+ +

>

+

+ + +
+ +

+ +

<

L T

T T

T

T

T T T
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( )
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1 2 2( 1)
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p 2

2/3

l
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oooooooooooooooooo
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oooooooooooooooooo (12)

Analogous expressions for Lg(T) are then obtained by using the above
results in eq 9 to find U and then substituting into eq 8. The relations
eqs 11 and 12 represent the key results of this work. In particular, eq
12 is a generalization of the LW law that accounts for the entrainment
of fluid between a macroporous groove and a microporous matrix,
including the effects of gravity.

■ RESULTS AND DISCUSSION
Model Results. We test the theory by numerically solving

eq 6. As predicted by the theory, we find that the results of the
numerical solutions are insensitive to the specific choice of
since 1; we use = 100 throughout. Figure 2 shows the
time evolution of Lg and Lp for a few different values of Λ and
for horizontal, upward, and downward wicking. The wicking
dynamics predicted by the analytic solution (eq 11) and its
approximation (eq 12) are nearly indistinguishable from each
other and from numerical solutions across all T and Λ.

To understand the wicking behaviors, we first recall that Λ
represents the relative importance of the groove. In the
absence of a groove (Λ = 0), the wicking follows the classical
LW law =L T2p or =l D t2p 0 , where D0 = kpPp/μ is the
LW mobility in the paper matrix. In this regime, the wicking is
not affected by α since gravity is negligible in the pores of the
paper. The introduction of a groove accelerates the imbibition.
During the initial stages of wicking, the imbibed liquid columns
are short; therefore, gravity plays a negligible role. At these
early times, we find a LW-type imbibition =l Dt2p [or

+L T2( 1)p ] with an enhanced mobility D = D0(1 +
Λ) due to the groove (Figure 2a). This enhanced wicking is a

consequence of the fluid simultaneously entering the paper
matrix from the groove and the reservoir.

When the wicking is horizontal, this enhanced LW behavior
persists at all times. Gravity becomes important at long times
for non-horizontal configurations. When the wicking is upward
(α > 0), the hydrostatic pressure in the groove opposes
wicking; therefore, the liquid level in the groove saturates at lg
= Pg/(ρg sin α) (or Lg ∼ 1). However, the groove continues to
imbibe fluid from the reservoir and continually feeds it to the
porous matrix. Consequently, wicking in the paper follows an
offse t ve r s ion o f the LW law o f ba re pape r

+l P g D t/( sin ) 2p g 0 (or +L T1 2p ); see Figure
2b. The stationary column in the groove now becomes the
primary liquid source for the paper.

Gravity plays a much more important role when the wicking
is downward (Figure 2c). It now aids the flow, driving the
liquid level in the groove to advance linearly in time. The
groove feeds the paper matrix as before, leading to Lp,g ∼ ρgkg
sin αAgt/(ϕApμ) (or Lp,g ∼ ΛT). The rate of growth differs
from that of an isolated groove by a factor of Ag/(ϕAp), which
occurs because the growing liquid column in the groove is
spread across the area of the paper matrix. In contrast with the
horizontal and upward cases, downward wicking leads to linear
imbibition at long times, beating classical LW growth. This
linear growth occurs solely due to contact with the groove,
despite the negligible gravitational forces in the pores of the
paper.

When the paper’s cross-sectional area becomes very small,
the groove dominates the wicking and negligible liquid is
entrained into the porous matrix. This corresponds to

1 and is not directly relevant to typical paper
microfluidic devices. While this regime is outside the range of
validity of eq 12, the coupled system (eq 6) indeed recovers
the groove-only regime in the appropriate limit (Λ → ∞).

Comparison to Experiments. We compare the theoreti-
cal predictions to experiments of upward vertical wicking (α =
90°) from our previous study.31 In that study, straight grooves
were fabricated on Whatman grade 4 filter paper strips by
using an Epilog Zing 16 CO2 laser cutter. Grooves of 180 μm
width were made by cutting a line element, while their depth
was controlled by the laser’s traverse speed. Wider grooves
were created by cutting rectangular boxes instead. The
fabricated paper devices were mounted vertically in a
humidity-controlled chamber (99% RH; therefore, evaporation
effects are negligible), and wicked deionized water was placed
in a reservoir. The imbibed distances in the paper matrix were
recorded over time by using a Nikon D5100 camera.

To compare the present theory to these experiments, we
relate permeabilities and capillary pressures to the relevant
physical and geometric properties of the system. We adopt the
simplest approach of modeling the paper as a bundle of
capillaries with effective radius r, which yields a Darcy
permeability kp = r2/8 and a capillary pressure Pp = (2γ
cos θ)/r, where θ is the contact angle of the air−water interface
with paper. The effective permeability of a rectangular groove
can be expressed as kg = wgdg f(wg/dg), where f is a known
function of the aspect ratio.33 To determine Pg, we denote the
contact angles at the front, back, and side faces of the groove
by θf, θb, and θs, respectively. An infinitesimal displacement dz
of the meniscus in the groove changes the interfacial energy by
γ(cos θf + cos θb)wgdz + 2γ cos θbdgdz, which is compensated
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by the work done by the capillary pressure, Pgwgdgdz. This
leads to19,34

= + +
P

w d
2 cos cos cos

g
s

g

f b

g
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We expect θ to be close to 0° since the porous paper matrix is
highly wetting, whereas 0° < θs < 90° since the laser etching
burns the side faces of the groove, lowering its wettability. The
contact angles θf and θb depend on whether the groove is cut
all the way through the paper as well as the choice of backing
material. They are expected to be close to or even exceed 90°
since the front and back faces are more hydrophobic than the
surfaces exposed to the paper matrix. These features make the
groove less wettable than the paper matrix. Whether the groove
is open or closed on the front and back surface also affects the
boundary conditions and the shape of the meniscus, impacting
both kg and Pg.

25,26 In the interest of simplicity, we do not
account for these detailed features here but rather capture their
effect on fluid fluxes through the contact angles, which we treat
as free parameters when we compare to experiments. As noted
earlier, inertia is negligible over the time scales of interest in
the experiments. The capillary number μv/γ is small (≲10−4);
therefore, we treat the contact angles as constants throughout
the wicking dynamics.

Single Groove: Effect of the Width. To determine the
various parameters in theory, we first calibrate the properties of
the paper matrix with a wicking experiment in a bare
(ungrooved) paper strip (Figure 3a). The experimental data
in this section correspond to the “no tape” data in Figure 4b of
Modha et al.,31 where the groove is cut through the thickness
of the paper and no backing materials are applied, leaving the
front and back faces of the channel open to the atmosphere.
For ungrooved paper (Λ = 0), eq 12 retrieves the classical LW
law =l D t2p 0 , with D0 = kpPp/μ = γrp cos θ/(4μ). The lp(t)
data in ungrooved paper closely follow the LW law with D0 ≈
6.4 mm2/s, leading to rp cos θ ≈ 0.51 μm. The closeness of this
fit also confirms that gravity plays a negligible role in the pores
of the paper.

The introduction of a groove (wg = 180 μm) accelerates the
wicking, as has been reported in past studies. The early-time
behavior follows a LW law l D t2p early , with Dearly ≈ 17.2
mm2/s obtained from a fit (Figure 3a). However, this law does
not capture the behavior at later times, which is better
described by a shifted LW law +l l D t2p 0 late (this form is
motivated by the theory) with Dlate ≈ 6.3 mm2/s and an offset
l0 ≈ 1.1 cm. We observe that Dearly in grooved paper is
noticeably greater than D0, while Dlate is quite close to D0. This
is consistent with the theoretical prediction that initial growth
is faster than that in bare paper, while the growth rate at late
times is unchanged.

The contact angles of the various faces internal to the groove
are difficult to measure directly. As noted earlier, we expect θs
< 90° and θb and θf close to 90°. We treat these angles as fit
parameters and choose θs = 60° and θb = θf = 107° (this gives
lc = 1.7 cm, tc = 45 s, and Λ = 3.9). With these parameter
values, the analytical theory (eq 12) reproduces the
experimental wicking dynamics in the grooved channels of
various widths (Figure 3a).

It is interesting to note that increasing the width of the
groove from 180 to 230 μm decreases the speed of wicking
(though it is still faster than bare paper). This observation was

reported previously by Modha et al.31 but is not explained by
area-averaging models,17,32 which predict that the wicking rate
should increase when the relative area of the highly permeable
groove is increased. The present theory captures this observed
slowdown with an increasing groove width (Figure 3a). This
occurs because the front and back surfaces are hydrophobic on
average (θf,b > 90°); therefore, increasing the width of the
groove decreases the capillary pressure Pg, lowering both the
entrainment factor Λ and the rise height in the groove. Upon
further increasing wg to 280 μm, the wicking is similar to that
of the ungrooved paper matrix. While the theory still predicts a
slightly faster wicking at this groove width, the experiments of
Modha et al.31 show that it is, in fact, slightly slower than that
of the blank paper channel. This is likely the result of tortuous
fluid paths through the paper matrix being cut off due to the
now reduced width of the paper matrix, leading to a width-
dependent permeability kp of the paper (see the study by
Castro et al.9), which we do not model here.

When the width of the groove exceeds a critical value
* = +w d2 cos /(cos cos )g g f b , the groove becomes non-

wetting (i.e., Pg = 0) and no longer participates in the wicking;
see eq 13. For > *w wg g , the groove splits the paper strip into
two, with each half wicking independently of the other,
behaving similarly to ungrooved paper. These features imply
the existence of an optimum groove width < *w wg

opt
g that

minimizes wicking time. To investigate this optimum
theoretically, we consider the same experimental conditions

Figure 3. (a) Wicking in paper strips versus groove width showing
experiments (Figure 4b “no tape” of Modha et al.;31 symbols) and
model predictions (curves). The model reduces to the LW equation
in ungrooved paper, =l Dt2p . When a groove is introduced, early
and late time behaviors are best fit with two different D. Widening the
groove from wg = 180 μm to wg = 280 μm leads to slower wicking due
to the poorer wettability of wider grooves. (b) Theoretical prediction
for the time to wick a length l relative to ungrooved paper as a
function of the groove width. The wicking time is minimized at an
optimum groove width, marked with circles.
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of Figure 3a while systematically varying the groove width.
Figure 3b shows the predicted time required for the paper to
wick a fixed distance as a function of the groove width,
normalized by the time to wick the same distance in ungrooved
paper. The wicking is fastest at an optimum width wg

opt that
depends on the target wicking distance, with larger distances
associated with smaller optimal widths. The optimal width to
wick a desired length l can be identified from eq 11 by
requiring that (after re-dimensionalizing variables) dt/dwg = 0.
Due to the complicated form of eq 11, the optimum cannot be
written down in closed form for a general combination of
design parameters. However, for small wicking lengths l ≲ lc,
we find that the optimum width is about *w1

2 g for grooves of

roughly square cross-section [ * = ]w O d( )g g and about *w2
3 g for

wider grooves *w d( )g g . Grooves that are wider than this
optimum lead to smaller Pg and thus Λ, whereas narrower
grooves offer greater resistance to flow. At larger target wicking
lengths, the main effect of the groove is to provide the paper
with a source of fluid at a distance Pg/(ρg sin α) from the
reservoir, as discussed earlier. Since the increased resistance of
the groove does not influence the dynamics at late times, the
optimal groove width is shifted to smaller values (longer
capillary lengths) for longer target wicking lengths, as seen in
Figure 3b.

For the experimental parameters considered in Figure 3, the
predicted optimum groove width is below 150 μm. Although
the experiments make the existence of an optimum clear (the
wicking rate increases and then decreases with an increasing
groove width), the narrowest groove reported by Modha et
al.31 is 180 μm wide; therefore, we are unable to directly
validate the predicted location of the optimum. This remains a
task for future work and indicates opportunities for flow
control with geometrical surface modifications.

Multiple Grooves. The theory also captures wicking with
multiple parallel grooves. We compare again to experiments of
Modha et al.,31 where multiple identical parallel grooves (180
μm wide) with uniform spacing were etched in a paper strip 6
mm wide. Figure 4 plots the time to wick at a distance of 4 cm,
showing experiments (symbols) and theory (curves). Increas-
ing the number of grooves increases the rate of wicking. As
before, we used the experiment with ungrooved paper to
determine the LW mobility, D0. We then apply the theory “per
groove” by interpreting wp in the theory as the total width of

the paper strip divided by the number of grooves. Using θf = θb
= 98° as a free parameter (other model parameters are
unchanged from before), the theory (eq 12) quantitatively
recovers the dependence of wicking time on the number of
grooves. We apply the same procedure for paper whose front
and back faces are treated with Uline S-423 Industrial Tape
(Uline, Pleasant Prairie, WI, U.S.A.), once more finding good
agreement with experiments, this time with θf = θb = 90°. By
contrast, using an area-averaged LW description with an
effective pore size = + +r A r A k A A( /8 )/( )eff p g g p g

(dashed curve in Figure 4) in the spirit of previous studies
of multi-ply paper-based devices17 underpredicts the wicking
time by an order of magnitude.

■ CONCLUSION
Engineering surface grooves on paper can have a profound
effect on liquid imbibition. Here, we have developed a model
based on fundamental principles that predicts the imbibed
length as a function of time in terms of interfacial and
geometric properties. The model leads to an analytical theory
that generalizes the Lucas−Washburn law of multiscale porous
media with gravity, controlled by a key dimensionless
parameter Λ that characterizes the ratio of fluxes in the
groove and the porous paper matrix. The theory is shown to
reproduce previously reported experimental studies of vertical
imbibition in a grooved channel. A key finding is that gravity
plays an important role in the dynamics, as it may be important
in the groove, even though it has a negligible influence as a
force in the pores of the paper matrix. We also rationalize the
observation that increasing the groove width can decrease the
rate of wicking and attribute it to the combination of (i)
reduced capillary pressure for wider grooves and (ii) the
stronger influence of gravity in wider grooves. We predict that
the transport is maximally enhanced by a groove with an
optimum width that trades off these effects. Finally, we show
that the theory captures equally well the imbibition of fluid
through paper strips with multiple parallel grooves.

The present work provides a rigorous and quantitatively
accurate framework by which to analyze fluid transport in
paper channels with modifications to the surface geometry.
The model predictions have simple analytical forms; therefore,
we envision it to be a useful tool for the design and
optimization of paper-based microfluidic devices seeking
precise flow control. A prediction of the theory that could be
tested in future work is that a downward sloped groove can
lead to linear wicking. It would be interesting to realize this
behavior in a practical paper-based device. The ideas laid out
here may be adapted to more complex configurations involving
the exchange of fluid between groove or pore networks with
different wettabilities, geometries, and topologies.
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