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We consider the translation of a rigid, axisymmetric, tightly fitting object through a
cylindrical elastic tube filled with viscous fluid, using a combination of theory and
direct numerical simulations. The intruding object is assumed to be wider than the
undeformed tube radius, forcing solid–solid contact in the absence of relative motion. The
motion of the object establishes a thin fluid film that lubricates this contact. Our theory
couples lubrication theory to a geometrically nonlinear membrane description of the
tube’s elasticity, and applies to a slender intruding object and a thin tube with negligible
bending rigidity. We show using asymptotic and numerical solutions of the theory, that the
thickness of the thin fluid film scales with the square root of the relative speed for small
speeds, set by a balance of hoop stresses, membrane tension and fluid pressure. While
membrane tension is relatively small at the entrance of the film, it dominates near the exit
and produces undulations of the film thickness, even in the limit of vanishing speeds and
slender objects. We find that the drag force on the intruding object depends on the slope
of its surface at the entrance to the thin fluid film, and scales as the square root of the
relative speed. The predictions of the lubricated membrane theory for the shape of the film
and the force on the intruder are in quantitative agreement with three-dimensional direct
numerical simulations of the coupled fluid–elastic problem.

Key words: lubrication theory, flow–vessel interactions

1. Introduction

The interaction between fluid flow and deformable boundaries is a topic with a wide
range of applications including in blood flow, geophysics, biophysics and microrheometry

† Email address for correspondence: bhargav@engr.ucr.edu
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(Vlahovska, Podgorski & Misbah 2009; Greenwood 2020). Relative motion between soft
surfaces separated by a fluid establishes a lubricated flow capable of supporting lift forces
(Johnson 1970; Sekimoto & Leibler 1993; Beaucourt, Biben & Misbah 2004; Skotheim &
Mahadevan 2004; Urzay, Llewellyn Smith & Glover 2007; Szeri 2010; Davies et al. 2018)
and torques (Rallabandi et al. 2017; Saintyves et al. 2020), with applications in reducing
drag (Dowson & Higginson 1959, 1966; Saintyves et al. 2016). While many recent studies
consider the case of nearly planar soft surfaces (Snoeijer, Eggers & Venner 2013; Essink
et al. 2021; Rallabandi et al. 2018), problems such as the motion of eggs through the
oviduct (Bradfield 1951; Salamon & Kent 2014), the flow of red blood cells or vesicles
through very narrow capillaries (Lighthill 1968; Fitz-Gerald 1969; Vann & Fitz-Gerald
1982; Secomb et al. 1986; Barakat & Shaqfeh 2018a; Freund 2014) or medical procedures
such as vascular intervention (Vurgaft, Elbaz & Gat 2019), require an elastic boundary
whose reference state is cylindrical or more generally curved. Introducing a solid object
(which in the following we call the intruder) too large to fit into the undeformed cylinder,
produces a hoop stress that holds the intruder in place. The ‘dry’ version of this problem
(Rallabandi et al. 2019) revealed the interplay between hoop stresses and longitudinal
stretching, which is characteristic of the cylindrical geometry. In the present paper we
take the tube to be filled with liquid, and apply a force to the intruder (as if pulled by
a string), so that thin lubricating liquid layers reduce the friction between the tube and
the intruder. Hoop stresses due to the curved boundary, the tension of the membrane, and
viscous stresses, are coupled with the pressure of the fluid flow.

To our knowledge, Lighthill (1968) was the first to treat a variant of this problem,
considering an object (possibly elastic) pushed through an elastic tube by a pressure
gradient. Lighthill (1968) made a parabolic approximation for the intruder shape, and
only considered hoop stresses in his analysis. We will see, below, that even in the limit
of low speeds, this is not possible, and stretching of the membrane always comes into
play. In subsequent publications (Fitz-Gerald 1969; Vann & Fitz-Gerald 1982; Secomb
et al. 1986), the pressure-driven model was refined further to account for the specifics of
the motion of red blood cells through capillaries, including the effects of asymmetry, the
detailed elastic response and the tube porosity. The related problem of pressure-driven
motion of close-fitting vesicles in tubes has been analysed using both asymptotic analysis
(Barakat & Shaqfeh 2018a) and numerical simulations (Barakat & Shaqfeh 2018b). By
contrast, Chatkoff (1975) considered a different driving mechanism: the motion of ovoids
through tubes deforming peristaltically. Takagi & Balmforth (2011) analysed the peristaltic
pumping of a small (i.e. narrower than the tube) object suspended in a fluid-filled tube.
Recently, Vurgaft et al. (2019) considered the flow in an elastic tube due to the insertion
of a narrower rigid cylinder.

In this work we focus on the motion of an object as produced by the application of an
external force acting along the tube’s axis. We approach the problem using lubricated
membrane theory, which we develop in detail for slender intruders moving through
thin-walled soft tubes, and which we compare with full three-dimensional (3-D) direct
numerical simulations (DNS) of the fluid–elastic problem. Our theory accounts for both
hoop stresses and membrane stresses in the tube through a geometrically nonlinear theory
of the tube elasticity (Sanders 1963; Koiter 1966; Budiansky 1968) which is coupled to
the lubrication pressure in the fluid film. We analyse this framework for intruders with
arbitrary axisymmetric shape under both the full membrane theory and a linearized version
of it. Performing a systematic asymptotic analysis in the limit of small velocities, we find
approximations for the film thickness and the force. The force is found to depend primarily
on the slope of the intruder at the leading edge and is only weakly sensitive to other
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Motion of a tightly fitting object through an elastic tube
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Figure 1. Sketch of the cross-section of the set-up showing an axisymmetric intruder translating through an
elastic tube (red solid line) filled with liquid, as seen in a reference frame attached to the intruder, which moves
from right to left. The radial excess of the intruder beyond the undeformed tube (dashed line) is characterized
by δ(z) and determines a ‘dry contact’ region of length �, as indicated in panel (a). Relative motion between
the intruder and the tube is supported by a fluid film of thickness h(z), as shown in panel (b), which is to be
determined.

details of its shape. Numerical solutions of the lubricated membrane theory allow us to
obtain a quantitative description over the entire parameter space of relative velocity and
tube deformation, and over a wide range of intruder shapes. We find good agreement of
theory with DNS, in which we solve the full coupled fluid and elastic equations, without
assumptions on the membrane thickness. We find that the membrane tension is important
even for very slender intruders moving at small speeds.

In § 2 below, we introduce the problem and set up its mathematical structure, starting
with a description of the fully coupled fluid–elastic problem to be solved. Section 3
develops the lubricated membrane theory in detail, accounting for tension and hoop
stresses in the tube. A simplified version of the theory neglecting tension is analysed in § 4
for arbitrary, but slender, intruder shapes in the singular limit of small speeds. Equipped
with insight from this analysis, we then analyse the nonlinear membrane theory in § 5 with
asymptotic and numerical methods. Now, the membrane theory is shown to be in excellent
agreement with full DNS for the detailed film shape as well as for the force required to
drive the intruder at small speeds. Comparison with the hoop-stress model of § 4 reveals
a qualitatively different film shape owing to finite tension, even though the effect on the
force is small for slender intruders, which can be understood in the asymptotic limit of
small speeds. We conclude with a discussion of the validity of the theory and its potential
extensions in § 6.

2. Problem formulation

2.1. Problem formulation and numerical implementation
We consider the motion of a rigid axisymmetric intruder through a fluid-filled cylindrical
elastic tube, as illustrated in figure 1 for the case that the particle translates from right to
left. In its undeformed state, the tube is a cylindrical shell with walls of thickness b and
whose midsurface has a radius a. The intruding object is wider than the tube and moves
through it at a prescribed steady speed V as it deforms the tube, due to the application of
a force F to the left.

In cylindrical coordinate system (r, θ, z) coaxial with the tube (figure 1), the intruder has
a radius R(z) whose maximum exceeds the tube radius a. We define the ‘radial excess’ of
the intruder relative to the tube by δ(z) = R(z) − a and assume it has a single maximum
δm (see figure 1); potential consequences of more complex shapes are discussed in § 6.
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Figure 2. Sketch of the domain and boundary conditions used in the 3-D DNS.

The geometric intersection points of the surfaces of the undeformed (cylindrical) tube
surface and that of the intruder define a single contiguous region of length �, where δ(z)
is positive (figure 1a). In the absence of motion, and in the limit of negligible bending
rigidity, the intruder contacts and deforms the tube in this region, which is the nominal
‘dry’ contact region (Rallabandi et al. 2019). We note that the region of static contact
for a finite bending rigidity is generally smaller (by an amount that depends on the wall
thickness b). The motion of the intruder in the presence of a lubricating fluid breaks the
solid–solid contact by further deforming the tube and dynamically establishing a fluid film
between the intruder and the inner tube surface, as sketched in figure 1(b). Our objective is
to calculate the thickness h(z) of the lubricating film, and consequently the force necessary
to drive the motion of the intruder.

We address the problem using both numerical solutions (using DNS) of the coupled
fluid–elastic problem and by developing a reduced-order theory that combines thin-film
lubrication with the geometrically nonlinear description of the elastic deformation of the
tube. The former is introduced below, while the latter is developed in the § 3.

2.2. Implementation of DNS
For the full 3-D axisymmetric DNS, we consider a finite tube of length L = 25a (see
figure 2). The reference frame is attached to the left-hand end of the tube while the intruder
(blue curve in figure 2), initially at the right-hand end of the tube, moves towards the
left-hand end at a constant speed, V . The problem in this reference system is unsteady and
the equations governing the problem are integrated in time until the force required to keep
the object moving at constant speed reaches a steady value.

The flow is assumed incompressible and Newtonian (viscosity μ) and is described by
a velocity v(x, t) and pressure p(x, t). Neglecting the inertia of the flow and defining the
fluid stress tensor σ (x, t) = −pI + μ(∇v + ∇vT), the equations of motion of the fluid are

∇ · σ = 0 and ∇ · v = 0. (2.1a,b)

The tube is treated as an incompressible 3-D linearly elastic material with Young’s
modulus E, although we will allow for compressibility of the solid in the theory developed
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in the next section. The undeformed configuration (stress-free state) of the tube is that of
a cylindrical shell with walls of thickness b whose inner surface has radius a. Points in the
undeformed state are denoted X , which are mapped to points in the deformed configuration
via x = x(X , t). The change in distance between two material points is measured by the
deformation tensor F = ∂x/∂X . Neglecting the inertia of the solid and denoting the solid
stress tensor by σ s, the balance of elastic stresses for an incompressible neo-Hookean solid
is (Suo 2013; Landau & Lifshitz 1984)

∇ · σ s = 0 where σ s = −psI + E
3

(F · F T − I), with (2.2a)

det F = 1. (2.2b)

The constraint of incompressibility (2.2b) is enforced by the solid pressure ps(x, t).
At the inner surface of the tube (r = h1(z, t), see figure 2) we apply continuity of fluid

and solid velocities and stresses

v = vs, n · σ = n · σ s, at r = h1(z, t), (2.3)

where n is the unit normal and vs = ∂x(X , t)/∂t is the solid velocity. The outer surface of
the tube (r = h2(z, t)) is stress free,

n · σ s = 0 at r = h2(z, t). (2.4)

The no-slip condition is enforced at the surface of the intruder,

v = −Vez at r = R1(z, t), (2.5)

with regularity conditions ∂vz/∂r = vr = 0 prescribed at the tube axis r = 0.
At both tube ends, z = 0 and z = L, the pressure is kept zero to avoid the introduction

of external pressure gradients

p(z = 0, r, t) = p(z = L, r, t) = pext = 0. (2.6)

At these ends, the radial component of velocity is set to zero, and the axial component
is computed from the axial momentum equation. At the right-hand end, the tube wall
is clamped in the axial direction but it is allowed to move in the radial direction,
while at the left-hand end, the tube is free to move in both axial and radial directions.
These displacements are accommodated by prescribing zero gradient of tangential stress
at the clamped end ∂(ez · σ s)/∂z|z=L = 0 and zero tangential stress at the free end
ez · σ s|z=0 = 0, the latter corresponding to no stretching of the tube at the left-hand end.

At any time the axial force, F(t), required to keep the object moving a constant speed V
is computed by integrating the fluid stresses over the surface of the intruder

F(t) = 2π

∫ z1

z0

n · σ · ez r
√

1 + (dR/dz)2
∣∣∣∣
r=R(z,t)

dz, (2.7)

where z0 and z1 are axial positions where the intruder shape meets the axis, R(z0, t) =
R(z1, t) = 0. As a test of consistency of the results, this force is also computed as the
differences of axial elastic force across the ends of the tube

F(t) = 2π

(∫ r=h2(L,t)

r=h1(L,t)
ez · σ s · ezr dr −

∫ r=h2(0,t)

r=h1(0,t)
ez · σ s · ezr dr

)
. (2.8)

The set of governing equations (2.1a,b)–(2.2) (more precisely, the time-dependent forms
of the stress balances but suppressing nonlinear inertia) subject to the boundary conditions
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(2.3)–(2.6), are integrated simultaneously for the fluid and solid velocities and stresses v,
σ , vs, σ s, which depend on both position x and time t. The details of the numerical method
are given in Appendix A and follow from the work of Herrada & Montanero (2016) and
Snoeijer et al. (2020). In the course of this solution we self-consistently determine the
inner and outer surfaces of the tube. The force is monitored over time using both (2.7) and
(2.8) (these are verified to be identical for all of the results) until a steady value is attained,
which we report simply as F in the subsequent sections.

3. Lubrication theory coupled to membrane elasticity

To obtain more insight into the problem, we introduce a simplified description in which we
analyse the fluid flow using lubrication theory and describe the tube elasticity using shell
theory. It is useful to attach the reference frame to the intruder, so that the tube wall now has
a rightward speed V; as a result, we can look for steady solutions directly. In this reference
frame we shift the origin of z so that the nominal ‘dry’ contact lines are fixed at z = 0
and z = �, identified by geometric intersection of the intruder and the undeformed tube
(figure 1). Henceforth, all quantities will be described in this object-attached reference
frame, though we retain the same notation z as before. The relative motion establishes a
thin fluid film of thickness h(z), so the local radial deformation of the tube wall is δ(z) +
h(z). The shape of the thin film h(z) is unknown a priori and must be determined as a part
of the solution to the fluid–elastic problem.

We assume that the film is thin relative to the radius of the intruder, and that the intruder
has a slender shape, so lubrication theory is applicable. As is typical in lubrication the
pressure is constant across the film (Batchelor 1967) and is related to the axial velocity
according to

vz = 1
2μ

dp
dz

(r − δ(z))(r − (δ(z) + h(z))) + V
r − δ(z)

h(z)
. (3.1)

The fluid flux through the film per circumference of the tube is q = −h3/(12μ) dp/dz +
Vh/2. At steady state, q is a constant and so the pressure must satisfy

dp
dz

= 6μV(h − h∗)
h3 , (3.2)

where we have introduced the constant h∗ ≡ 2q/V , which is the effective gap thickness
that can support the flux q in axial shear flow between locally cylindrical surfaces; its
value is to be determined as part of the solution. We will show that the condition for the
lubrication approximation to hold, |dh/dz| � 1 reduces to the condition that the intruder
has a slender shape (δm/� � 1) up to moderately large velocities. For a calculation of the
force alone, even this assumption can be dropped in some limits; we will discuss later the
self-consistency of our approximations.

We treat the elastic problem based on the elastic shell theory of Sanders (1963), Koiter
(1966) and Budiansky (1968), which we specialize here to axisymmetric deformations
of cylindrical shells (i.e. tubes) following Audoly & Pomeau (2010); see Appendix A of
Holmes (2019) for an overview of nonlinear shell theories. In Rallabandi et al. (2019), we
treat the ‘dry’ version of the present problem, in which the tube is stretched by elastic
contacts alone. In the theory, tube walls are assumed thin relative to the radius of its
midsurface b � a. In particular, we will consider the membrane limit, in which bending
rigidity can be neglected.

We describe the elasticity of the tube using a description of its midsurface. Points on
the undeformed cylindrical configuration have position r = (a, z). The tube is deformed by
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Motion of a tightly fitting object through an elastic tube

tractions (forces per area) f (z) = { fr(z), fz(z)} acting on its surface and line force densities
(force per length) T±∞ acting along its circumference at the two ends, which we take to
be at z = ±∞. We define a twistless, axisymmetric deformation field u(z) = (ur(z), uz(z))
that maps material points to their new positions in the deformed state r �→ r + u(z). Note
that this description is an Eulerian one that parameterizes deformations in terms of the
axial coordinate z of a point in the undeformed state rather than its location z + uz in the
deformed state. The distinction between these frames is small when the axial displacement
gradient is small, i.e. duz/dz � 1, which is one of the assumptions of membrane theory.
Note that this does not mean that duz/dz can be taken as zero, since the elastic stresses
depend linearly on this quantity at leading order.

We denote the membrane strains in the z and θ directions, respectively, by εs and εθ .
The membrane strains determine the change in distance between two material points.
Assuming small strains and moderate rotations (see Audoly & Pomeau 2010), we can
write, for cylindrical tubes,

εs = u′
z + 1

2(u′
r)

2, εθ = ur

a
, (3.3a,b)

where the prime denotes the derivative with respect to z. Note that similar geometric
approximations for plates (a → ∞) form the basis of the Föppl–von Kármán equations
(Landau & Lifshitz 1984).

The strain field produces so-called ‘membrane stresses’ N (a vector with units of force
per length) with components Ns and Nθ in the axial and azimuthal directions, respectively.
The quantity Nθ (z) is called the hoop stress and we refer to Ns(z) as the membrane tension,
which we denote by T(z). For Hookean elasticity, the membrane stresses are given by

Ns = T = Eb
1 − ν2 (εs + νεθ ) and Nθ = Eb

1 − ν2 (εθ + νεs), (3.4a,b)

where E is the material’s Young’s modulus introduced earlier and ν is its Poisson’s
ratio; ν = 1/2 for incompressible materials. We neglect the bending rigidity of the tube,
whose contribution to internal stresses scales as b3 and is, therefore, small for thin-walled
tubes. Introducing the local tangent to the deformed surface by t(z) = (tr(z), tz(z)), local
equilibrium of the membrane requires

d
ds

(Nstr) − Nθ

a
+ fr = 0, (3.5a)

d
ds

(Nstz) + fz = 0. (3.5b)

At the twoends,membranestressesbalance theapplied forcedensities,Nst|z=±∞ = ±T±∞.
The surface traction on the membrane is related to stresses in the fluid so

f = n · σ |r=a+ur(z), where n is the fluid-facing normal. For small slopes consistent with
lubrication, n ≈ −er + u′

r(z)ez and t ≈ u′
r(z)er + ez, and we obtain

fr = p(z), (3.6a)

fz = −pu′
r(z) − μ

∂vz

∂r

∣∣∣∣
r=a+ur(z)

= −pu′
r(z) − p′(z)

h
2

− μV
h

, (3.6b)

where we have used (3.1). We then eliminate εs between the two equations of (3.4a,b)
and use (3.3a,b) to obtain Nθ = Ebur/a + νT (recall that T is simply a relabeling of Ns).
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Substituting this relation into (3.5) and using (3.6) then yields

p = Eb
a2 ur + νT

a
− d

dz

(
T

dur

dz

)
, (3.7a)

dT
dz

= −fz = p
dur

dz
+ dp

dz
h
2

+ μV
h

, (3.7b)

where h(z) = ur(z) − δ(z). Equation (3.7a) shows that the pressure in the fluid is
balanced by three distinct elastic stress contributions. The first is due to the local radial
displacements of the reference state producing a hoop stress, and the second is the
additional hoop stress generated by the axial tension for materials with non-zero Poisson’s
ratio. The third is the normal stress component arising from the tension within the locally
rotated (relative to the tube axis) section of the tube. Membrane tension in (3.7b) is
generated in response to the tangential stress exerted by the fluid, see (3.6).

The pressure can be eliminated by substituting the z-derivative of (3.7a) into the
lubrication relation (3.2), and then using this result for dp/dz along with (3.7a) itself in
(3.7b). This yields a system of two ordinary differential equations

dur

dz
+ νa

Eb
dT
dz

− a2

Eb
d2

dz2

(
T

dur

dz

)
− 6μVa2

Eb
(h − h∗)

h3 = 0, (3.8a)

dT
dz

= Eb
2a2

d(u2
r )

dz
+ νT

a
dur

dz
− d

dz

(
T

dur

dz

)
dur

dz
+ μV

(4h − 3h∗)
h2 , (3.8b)

for ur(z) and T(z). These equations are subject to the condition that the pressure decays
away from the intruder and the tube becomes asymptotically flat at both ends, u′

r(±∞) = 0
or t(±∞) = ez. Then, the tension on the left-hand end is imposed T(−∞) = T−∞. The
tension T∞ on the right-hand end is not directly prescribed but is instead the force (per
circumference) required to hold the tube fixed as the intruder slides through it, obtained
self-consistently as a solution to the problem. The system (3.8) represents our nonlinear
membrane theory, coupled to lubrication equations. It is the basis of our asymptotic
description of the small speed limit, and will also be solved numerically for arbitrary
speeds, as described in Appendix B.

The force exerted by the fluid on the intruder is the difference of the tensions across the
ends of the tube

F = 2πa
∫ ∞

−∞
fz dz = 2πa(T∞ − T−∞), (3.9)

where we have used (3.7b). The equivalence between the force and the difference in tension
in (3.9), up to the factor of 2πa, mirrors the equivalence of (2.7) and (2.8). In the particular
case of a free left-hand end (T−∞ = 0), the tension on the right-hand end T∞ is simply
the force on the intruder per 2πa. Thus, even with a free end, there is always tension to the
right of the intruder that is needed to maintain steady-state translation.

We rescale the governing equations (3.8) by focusing on the limit of small velocities.
The characteristic radial displacement is set by the maximum radial excess δm of the object,
which sets a characteristic pressure scale Ebδm/a2 through (3.7a). Using the axial length
scale �, the thin-film equation (3.2) therefore yields a film thickness scale δmλ

1/2, where

λ = 6μVa2�

Ebδ3
m

(3.10)

is the dimensionless speed of the intruder and has counterparts in the analysis of lubricated
Hertzian contacts (Snoeijer et al. 2013; Essink et al. 2021) and plays a role analogous to

926 A27-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

71
2

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f C

al
ifo

rn
ia

 R
iv

er
si

de
, o

n 
10

 S
ep

 2
02

1 
at

 1
9:

08
:3

6,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2021.712
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Motion of a tightly fitting object through an elastic tube

the capillary number in the seminal work of Bretherton (1961). Additionally, the first term
of (3.8b) suggests a tension scale Ts = Ebδ2

m/a2. This contribution is produced by p dur/dz
(see (3.7b)) and is due to the stretching of the tube over the surface of the oversized
intruder. Thus, the tension remains non-zero – in particular over the region of contact
with the object – even in the dry (static) limit of vanishingly small speeds (see figure 1).
However, its difference across the tube, which yields the drag force per circumference, is
identically zero in this limit as expected.

Defining the rescaled variables Z = z/�, U = ur/δm, T = T/(Ebδ2
m/a2) and H =

h/(δmλ
1/2) and introducing the dimensionless parameters

ε = δm

a
and k = aδm

�2 , (3.11a,b)

the equations governing the lubrication flow and membrane elasticity (3.8) rescale as

dU
dZ

+ νε
dT
dZ

− kε
d2

dZ2

(
T dU

dZ

)
− (H − H∗)

H3 = 0, (3.12a)

dT
dZ

= 1
2

d(U2)

dZ
+ νεT dU

dZ
− kε

d
dZ

(
T dU

dZ

)
dU
dZ

+ λ1/2 (4H − 3H∗)
6H2 . (3.12b)

Here, H∗ = h∗/(δmλ
1/2) is a dimensionless constant representative of the fluid flux and is

to be determined as a part of the solution, see (3.2). Note that U(Z) = Δ(Z) + λ1/2H(Z),
where Δ(Z) = δ(z)/δm. In Appendix B we describe how to obtain full numerical solutions
to the steady-state problem (3.12) with membrane tension for arbitrary speeds λ. The
parameter ε quantifies the dimensionless radial excess of the intruder and is implicitly
small in membrane theory. The parameter k depends on the shape of the intruder and
is typically O(1). We will also define the force scale Fs = 2πEbδ2

m/a and introduce the
dimensionless force F = F/Fs given by

F =
∫ ∞

−∞

(
1
2

d(U2)

dZ
+ νεT dU

dZ
− kε

d
dZ

(
T dU

dZ

)
dU
dZ

+ λ1/2 (4H − 3H∗)
6H2

)
dZ

(3.13a)

= T∞ − T−∞, (3.13b)

which is simply the integral of (3.12b) over the length of the tube.
This completes the set-up of the lubricated membrane theory, which we discuss

numerically and theoretically in the following sections. It will turn out to be useful to
consider objects with arbitrary shape Δ(Z) including those that are not front-to-back
symmetric. At the same time, we note that a broad class of slender intruders that are
front-to-back symmetric, including ellipsoids, can be approximated using the parabolic
approximation that we detail later in (4.5). This approximation is valid as long as the
contacting part of the intruder is slender (δm/� � 1), with the remaining details of the
object’s shape being captured through the contact length �, its radial excess ε and the shape
parameter k, see (3.11a,b). For an ellipsoid with axial half-width Rz (and radial half-width
a + δm), the contact length is � = 2Rz

√
1 − (1 + ε)−2. Note that the slenderness condition

is not a requirement on the overall shape of the object but rather on the contact region. For
small ε, the slenderness condition, δm/� = √

δma/(2
√

2Rz) � 1, is satisfied as long as δm
is small and Rz is not much smaller than a.

Below, we will also focus on the situation where the axial stretching of the tube occurs
solely due to the motion of the intruder, and where no additional stretch is applied at
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the ends. This amounts to setting T−∞ = 0, though in various points in the analysis it will
be helpful to retain T−∞ to aid discussion.

Finally, we note that in the lubrication theory we have assumed that the main
contribution to the force comes from the neighbourhood of the intruder, and have neglected
the resistance coming from the Poiseuille flow far from it. To estimate the contribution
from the tube, note that the Poiseuille flow far from the intruder is associated with a
volume flux πa2V , which produces a pressure gradient p′(z) = 8μV/a2. If the total length
of the tube is L, this ‘pure’ Poiseuille flow occurs over a length L − 2Rz of the tube is thus
associated with a force Fp � 8π(L − 2Rz)μV , where 2Rz is the axial width of the intruder.
This corresponds to a dimensionless force (in units of the force scale Fs = 2πEbδ2

m/a of
lubrication theory) of

Fp ≈ 2ελ(L − 2Rz)

3�
. (3.14)

The force in (3.13) will turn out to scale as
√
λ, while the far-field contribution (3.14) is

proportional to the speed λ itself. The Poiseuille flow contribution is, therefore, small for
small speeds (λ� 1) provided that the tube is not too long, a claim that we verify in § 5.

4. The hoop-stress approximation (ε = 0)

Rather than analyse the coupled nonlinear system (3.12) straight away, we first consider a
simpler version of the problem that will provide both qualitative and quantitative insights
into the solution. This simplification, which can formally be reached by considering the
limit ε = 0 of (3.12) while keeping λ fixed, involves neglecting the influence of the
membrane tension on the normal balance of elastic stresses and retaining only hoop
stresses, so (3.7a) becomes p(z) ≈ Ebur(z)/a2. It will later become apparent that this
approximation is a good one to estimate the force on slender intruders, but misses
important features downstream of the intruder.

Writing U = Δ + λ1/2H, and defining the dimensionless slope of the intruder S(Z) =
dΔ/dZ (by definition O(1)), (3.12a) reduces to

λ1/2 dH
dZ

− (H − H∗)
H3 + S(Z) = 0. (4.1)

The above equation is subject to the condition U(±∞) = 0, or H(±∞) =
−λ−1/2Δ(±∞). Observe that to obtain this approximation, the highest derivative of (3.12)
has been dropped and tension no longer affects the fluid flow (this does not, however, mean
that the tension itself is zero – see below). The sole dimensionless parameter is λ and
the dependence on k, ν and ε is lost under this approximation. We will later obtain both
asymptotic and numerical solutions to (4.1).

Once (4.1) has been solved for H(Z), it can be used to determine the tension according
to

dT
dZ

= 1
2

d(U2)

dZ
+ λ1/2 (4H − 3H∗)

6H2 , (4.2)

which is the analogue of (3.12b). Note that the tension remains finite due to tangential
stresses in the fluid despite it not affecting the flow in this ε = 0 approximation.
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Motion of a tightly fitting object through an elastic tube

Integrating (4.2) over the entire length of the tube yields the force on the intruder

F = T∞ − T−∞ = λ1/2
∫ ∞

−∞
(4H − 3H∗)

6H2 dZ, (4.3)

where the first term of (4.2) integrates to zero as it is an exact derivative with vanishing U
at both ends of the tube. Solutions to (4.1) and the resulting tension will be presented in
more detail after first analysing (4.1) in the limit of small speeds.

4.1. Asymptotic solution for small speeds: λ1/2 � 1
We analyse (4.1) in the limit of small speeds, λ1/2 � 1, for which the problem splits into
three parts. First, the ‘dry’ contact region 0 < Z < 1 along the length of the intruder (the
‘outer’ region in the language of matched asymptotics), and two ‘inner’ regions of width
λ1/2, located around the leftmost contact point Z = 0 (the entry region) and the rightmost
point Z = 1 (the exit region), respectively (figure 1).

4.1.1. Thin film contact region (outer solution)
In the outer region (0 < Z < 1) the term multiplying λ1/2 can be neglected in (4.1), so the
film thickness H(Z) can be found by solving the algebraic equation

H − H∗

H3 = S(Z). (4.4)

If we approximate Δ by a parabola (the ‘parabolic approximation’), and since Δ(0) =
Δ(1) = 0, as well as the maximum thickness being normalized to unity, we obtain the
universal shape

Δ = 4Z(1 − Z). (4.5)

As a result, the dimensionless slopes at the entry become S0 = 4, and S1 = −4 at the exit.
Observe that H = H∗ when S = 0; thus, H∗ is identified as the film thickness at the

maximum radial extent of the intruder. Solutions to the cubic equation (4.4) are of the
form H(Z) = f (S(Z); H∗), illustrated in figure 3(a). Roots of the cubic equation have to be
chosen such that H(Z) remains continuous, with H = H∗ at the maximum, and physically
meaningful solutions can only be found for a finite range of combinations of S(Z) and H∗.

To illustrate this point, it is convenient to think of H∗ as the dependent variable;
rearranging (4.4) gives

H∗ = H(1 − H2S), (4.6)

where we recall that H and S are functions of Z, but H∗ is a constant that characterizes the
entire solution. As shown in figure 3(b), (4.6) describes two types of curve depending on
the sign of S. At the maximum, the two solutions have to be joined together continuously.
For regions where S < 0, H∗ grows monotonically with H, while for any value S > 0, H∗ is
only positive for H in the range 0 < H ≤ 1/

√
S, attaining a maximum value of 2/(3

√
3S)

when H = 1/
√

3S. Because H∗ is a constant, the largest permissible value of H∗ is set by
the maximum positive value of the intruder slope S(Z) over the dry contact region. If the
intruder shape is convex, this maximum slope occurs at the entrance Z = 0, and we obtain
the upper bound (see figure 3)

H∗ ≤ 2
3
√

3S0
, where S0 ≡ S(Z = 0). (4.7)

This condition must be satisfied for (4.6) to admit solutions throughout the ‘outer’ region
0 < Z < 1.
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0.8

0.6

0.4

0.2

0 0.2 0.4 0.6 0.8 1.0

S = S0 > 0
S = S1 < 0

S = 0

H =H
∗

�(Z)

H(Z)

Z

H∗

H

1

�S
0

1

�3S
0

2

3�3S
0

(a) (b)

H∗

Figure 3. (a) The solution H(Z) of (4.4) for the generic parabolic intruder shape (4.5); H = H∗ for the
maximum of Δ, at Z = 1/2. (b) The local film thickness H as a function of H∗ for S = S0 > 0 (red) and
S = S1 < 0 (black), as constrained by the outer solution (4.4). The dashed line H = H∗ corresponds to S = 0.
The space of possible solutions sweeps from the red curve to the black curve across the intruder as the slope
changes from S0 to S1. Continuity with the asymptote H(S → 0) → H∗ implies that the upper branch (crosses)
is unphysical. Thus, the outer solution restricts H ≤ 1/

√
3S0 and H∗ < 2/(3

√
3S0).

Furthermore, since the local thickness H(Z) must approach H∗ as S(Z) → 0, only the
solution branch H < 1/

√
3S is physically meaningful (figure 3b), leading to the upper

bound

H(Z) ≤ 1√
3S0

. (4.8)

Thus, for convex intruder shapes the slope at the entry region S0 limits the space of possible
solutions. This conclusion does not involve any detailed analysis of the entry region, but
is rather a consequence of the outer problem. We now show that the structure of the entry
region picks a unique value of H∗.

4.1.2. Boundary layers at entrance and exit (inner solutions)
Within the contact region, the film thickness is of order hs = λ1/2δm as noted in § 2, while
the typical length scale is �, and thus gradients in the film thickness are small in the limit
of small λ. However, at the edges of the contact region, located at Z = 0 and Z = 1, the
film profile has to adapt to the shape of a tube of constant radius, and axial derivatives in
(4.1) can no longer be neglected. In the scaling of (4.1), since S and H are of order one,
balancing the first and the last term we find that boundary layers are of dimensionless size
λ1/2. Since both the film thickness and the width of the boundary layers scale like λ1/2,
the lubrication approximation is not automatically satisfied for small λ. However, within
these thin boundary layers, dh/dz = O(δm/�), so the lubrication approximation remains
valid for a slender intruder.

We first analyse the boundary layer near the entrance to the film (Z = 0) which, as we
will show, uniquely determines the dimensionless flux H∗ when combined with (4.4). This
feature is analogous to many other similar problems, such as the Bretherton problem for
the motion of long bubbles in tubes (Bretherton 1961), or the motion of an elastic object
translating next to an elastic wall (Snoeijer et al. 2013). The scaling of the film thickness
remains unchanged from the outer problem, so we avoid introducing a new ‘inner’ variable

926 A27-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

71
2

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f C

al
ifo

rn
ia

 R
iv

er
si

de
, o

n 
10

 S
ep

 2
02

1 
at

 1
9:

08
:3

6,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2021.712
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Motion of a tightly fitting object through an elastic tube

4

3

2

1

0

4

3

2

1

0
–1.0 –0.2 0.2 0.4 0.6 0.8 1.00–0.5 0.5 1.00

H

H0 H1

S0 = 4 S0 = 4

S1 = –4

ζ = Z/λ1/2 ξ = (Z – 1)/λ1/2

(a) (b)

Figure 4. The self-similar profiles (a) at the entry to the film, located at Z = 0, and (b) at the back of the film,
located at Z = 1, indicated as solid curves. Towards the left and right in panels (a,b), respectively, the profiles
asymptote to the undeformed tube, represented by the dashed lines. The dimensionless slopes are those of the
parabolic approximation (4.5).

for H. Rescaling Z = λ1/2ζ , we obtain the similarity equation

dH
dζ

− (H − H∗)
H3 + S0 = 0 + O(λ1/2), (4.9)

since the slope S0 = S(0) is approximately constant across the boundary layer.
This equation has to satisfy matching conditions for ζ → ±∞: towards the film (ζ →

∞), where the film thickness is varying slowly, H has to match the film thickness of the
outer solution, and thus H(ζ → ∞) = H0 = f (S0; H∗) (cf. Figure 4a). Towards the tube
of constant radius, the film thickness increases linearly with the slope of the intruder:
H′(ζ → −∞) = −S0 (figure 4a). This latter condition is satisfied automatically as H
increases towards ζ → −∞, since the second term of (4.9) becomes smaller.

We now show that the condition as ζ → ∞ selects a unique solution to (4.9):
substituting H(ζ ) ≈ H0 + G(ζ ) into (4.9) and linearizing in G we find

dG
dζ

= 1
H0

(
1

H2
0

− 3S0

)
G =⇒ G(ζ ) ∝ exp

{
1

H0

(
1

H2
0

− 3S0

)
ζ

}
. (4.10)

For the perturbation G(ζ ) to remain small as ζ � 1 requires that H0 ≥ 1/
√

3S0. This
condition is consistent with the previously obtained upper bound (4.8) only when

H0 = 1√
3S0

, (4.11)

which sets the film thickness at the entrance. Using (4.4) we obtain

H∗ = 2
3
√

3S0
, (4.12)

which shows that the boundary layer solution selects the largest possible flux H∗ that
permits solutions of the outer problem (4.4). Separating variables, and using (4.12), (4.9)
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can be solved as

ζ = −S−3/2
0

∫ S1/2
0 H G3 dG(

G + 2/
√

3
) (

G − 1/
√

3
)2 (4.13a)

= − H
S0

+ 1
9S2

0 (H − H0)
+ 8

9
√

3S3/2
0

ln
(

H + 2H0

H − H0

)
, (4.13b)

which contains S0 as the sole parameter. The constant of integration has been chosen
such that H = −S0ζ + O(1/ζ ) for ζ → −∞, which is the profile of the undeformed tube.
This function is plotted in figure 4(a). Clearly, (4.13a) has the required linear growth for
ζ → −∞ (first term on the right-hand side). On the other hand, as H approaches H0
for ζ → ∞, the second term on the right-hand side of (4.13a) dominates, and the profile
approaches its limiting thickness as a power law H ∼ H0 + 1/(9S2

0ζ ).
A boundary layer of size λ1/2 also exists near the exit Z = 1, where we denote the slope

as S1 = S(Z = 1) < 0. However, H∗ is now fixed, having been selected at the entrance
as usual (see also Bretherton (1961) and Snoeijer et al. (2013)). Introducing the similarity
variable ξ = (Z − 1)/λ1/2 at the exit, (4.9) remains the same (with the substitution S0 �→
S1), but the matching conditions are reversed: H(ξ → −∞) = H1 = f (S1; H∗) toward a
film on the left, and H′(ξ → ∞) = S1 toward the tube on the right. Linearizing around a
constant film thickness H1 as before, we find

H(ζ ) = H1 + A exp

{
1

H1

(
1

H2
1

− 3S1

)
ξ

}
, as ξ → −∞. (4.14)

Now the prefactor in the exponential is always positive, so for ξ → −∞ the solution
converges exponentially onto the correct boundary condition (the outer problem), as seen
in figure 4(b), regardless of H∗. The solution near the exit is given by

ξ =
∫ H G3 dG

G − H∗ − S1G3 , (4.15)

subject to H = −S1ζ + O(1/ζ ) for ζ → ∞, which we calculate numerically (figure 4b).
The result now depends on the intruder shape at both the entrance and the exit through
the values of S0 and S1 separately. As before, numerical solutions of (4.1) near the exit
collapse onto the asymptotic solution (4.15) for small λ. It will turn out that the entry
region remains nearly unchanged in the fully coupled problem (3.12), while the exit region
is modified quantitatively by membrane tension.

4.1.3. Force on the intruder and tension in the tube
The force on the intruder is obtained by evaluating the integral in (4.3). This calculation
simplifies for λ1/2 � 1 since its main contribution comes from the thin film ‘contact’
region 0 < Z < 1, with the contribution from boundary layers being O(λ1/2) smaller.
Thus, we can approximate

F = λ1/2
∫ 1

0

4H − 3H∗

6H2 dZ + O(λ). (4.16)

Within the limits of the above integral, H(Z) is obtained by solving the cubic equation
(4.4), where S(Z) is given by the shape of the intruder. Note that at low speeds
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contributions to the force only come from the contact region, where the lubrication
approximation is valid even without assuming a slender intruder.

Equation (4.16) must be integrated numerically in general, though for the parabolic
approximation (4.5) (so S0 = 4) the integral can be evaluated analytically by transforming
to H as the integration variable, to give F � 0.873λ1/2. For a more general shape, a
convenient approximation for F is obtained by observing that near the middle of the thin
film (where S is small), H ≈ H∗ (the profile H(Z) is approximated by the dashed line in
figure 3a). With this approximation, the integral (4.16) becomes trivial, and using (4.12),
results in

F �
√

3
4

(λS0)
1/2 for λ1/2 � 1. (4.17)

For the parabolic intruder, this approximation yields F � 0.866λ1/2, which is remarkably
close to the exact result (≈ 0.8 % error). This surprisingly simple expression (4.17) predicts
that the dimensionless force depends solely on the slope of the intruder surface at the
entrance region. The dependence of F on local slope S0 at the entry despite shear stresses
being significant over the entire contact region (0 < Z < 1) is due to the fact that the
entrance selects the fluid flux H∗ ∝ S−1/2

0 through the film, see (4.12). Later we will show
that the simple approximation (4.17) is robust to changes in intruder shape as long as it
remains slender.

4.2. Comparison with numerical solutions of the lubricated hoop-stress model
We will now evaluate the quality of our approximations against numerical solutions of the
lubrication description, as given by (4.1). To this end we integrate (4.1) from the right with
a guess for H∗, which is adjusted until boundary conditions are satisfied to the far left of
the intruder.

4.2.1. Symmetric intruders
We first focus on the generic slender axisymmetric intruder (δm/� � 1), which is also
fore-and-aft symmetric (e.g. a prolate ellipsoid) and can be approximated by the quadratic
function (4.5) with S0 = Δ′(0) = 4. For an ellipsoid of axial half-width Rz (the half-width

in the radial direction is a + δm), the dry contact length is � � 2
√

2R2
z δm/a in the limit

δm � a.
Figure 5(a) shows numerical results of lubrication theory (4.1) for the normalized radial

displacement of the tube U(Z) = ur(z)/δm = Δ(Z) + λ1/2H(Z) for this shape. The tube
deformation relaxes over a length scale that increases with increasing λ corresponding,
for example, to faster translation speeds or softer tubes. As λ→ 0, the solution adopts a
boundary-layer structure with a dimensional axial width λ1/2�, as expected from § 4.1.
Solutions for the film near the entrance (Z = 0) and exit (Z = 1) regions are shown
as functions of the rescaled boundary layer coordinates in figure 5(b) and figure 5(c),
respectively. Numerical solutions are found to collapse onto the theoretical predictions
(4.13a) and (4.15) for the entry and exit regions for values of λ � 1. The qualitative
structure of the entry and exit layers remains unchanged even when λ � 1.

We now test the dependence of the solution on λ more systematically, and over a very
wide range. We will see below that even in the limit λ� 1 lubrication theory can be used
to calculate the force. As seen in figure 6(a), the dimensionless fluid film thickness H∗
(thickness at the maximum of the intruder), is relatively insensitive to λ, even over several
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Figure 5. The film shape for an intruder with parabolic shape (4.5) within the hoop stress approximation.
The object translates leftward relative to the tube. (a) Numerical results from solving (4.1) for the normalized
radial displacement U(Z) of the tube. The tube deformation relaxes over a length scale that increases with λ.
(b,c) Profiles of film thickness H in the boundary layers near the entry region (b) and exit region (c), where
numerical solutions (symbols) and theory (solid lines) are shown. Observe that the film thickness in the dry
contact region 0 < Z < 1 is relatively insensitive to λ.

orders of magnitude. The asymptotic result H∗ = 1/(3
√

3) from (4.12) for λ� 1 (note
that S0 = Δ′(0) = 4 for the chosen intruder shape) is indicated by the horizontal line.

When λ� 1, both the axial length scale and the film thickness become much greater
than the geometric scales imposed by the intruder, a trend which is already apparent in
figure 5(a). At large axial distances from a paraboloidal intruder the surface slope grows
as S(Z) = Δ′(Z) ∼ 4Z. Requiring a balance of all three terms of (4.1) far away from the
intruder reveals a film thickness H = O(λ−1/10) with variations over a characteristic axial
scale Z = O(λ1/5) (i.e. h = O(δmλ

2/5), z = O(�λ1/5)). This scaling law for H is reflected
in the behaviour of H∗ for λ � 102, indicated in figure 6(a). Note that in this limit dh/dz =
O(λ1/5δm/�), which is assumed small in the theory, so the intruder must be sufficiently
slender for the thin-film and the hoop-stress approximations to remain valid at large λ.
Note also that the paraboloidal approximation of the surface shape is valid over axial
length scales Z � Rz/�, so the above scaling relations for large λ are valid if λ1/5 � Rz/�.

Using (4.17), the dimensionless force on the generic symmetric intruder is
approximately

F � (3λ/4)1/2 or F � 6π (μVEb)1/2 (2R2
z δ

3
m/a)1/4, for λ� 1. (4.18)
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Figure 6. Numerical results from solving (4.1). (a) Rescaled flux H∗ versus λ for the generic symmetric
intruder (4.5), showing the asymptotic behaviour H∗ = 1/(3

√
3) at small λ (solid line) and the scaling

behaviour H∗ ∝ λ−1/10 at large λ. (b) Rescaled force F as a function of λ, showing the small-λ asymptotic
results (4.17) (solid line) and the scaling laws F ∝ λ2/3 and F ∝ λ4/5 for intermediate and large λ, respectively.
(c) Dimensionless tension T (Z) for different values of λ. The limiting value for Z → ∞ is the dimensionless
force F . The dashed line is Δ2/2 and corresponds to the tension over the intruder in the dry limit λ→ 0.

Figure 6(b) shows numerical results (symbols) for the dimensionless force on the
intruder, with the prediction of (4.18) indicated as a solid line, showing good agreement
for λ � 0.1.

At intermediate λ � 1, the axial length is still set by the intruder geometry, while the
film thickness becomes comparable to δm (recall that the characteristic film thickness is
hs = λ1/2δm). A balance between the first two terms in (4.1) with Z = O(1) determines
H = O(λ−1/6). Then, the force integral (4.3) yields the scaling estimate

F ∝ λ2/3 or F ∝ (EbδmR2
z )

1/3(μV)2/3, for λ � 1. (4.19)

This approximate scaling law at intermediate λ is indicated in figure 6(b), and accurately
represents the numerical results in the range 0.1 � λ � 10.

For λ� 1, the characteristic scales Z = O(λ1/2) and H = O(λ−1/10), obtained earlier,
yield the scaling law

F ∝ λ4/5 or F ∝ (μV)4/5(EbR4
z a)1/5, for λ� 1, (4.20)

when substituted into (3.13). This prediction is consistent with numerical calculations
for λ � 102, as indicated in figure 6(b). Since the force grows sublinearly in (4.20), this
is subdominant to the contribution (3.14) coming from the pipe, in the limit of large
λ. Whether the contribution to the force (3.14) from the Poiseuille flow can in fact be
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λ range H∗ Z F F max (dh/dz)

λ� 1 1/
√

3 O(1), O(λ1/2) (3λ/4)1/2 6π(μVEb)1/2(2R2
z δ

3
m/a)1/4 O(δm/�)

λ � 1 O(1) O(1) λ2/3 (μV)2/3(Eb)1/3(R2
z δm)1/3 O(δm/�)

λ� 1 O(λ−1/10) O(λ1/5) λ4/5 (μV)4/5(Eb)1/5(R4
z a)1/5 O(λ1/5δm/�)

Table 1. Summary of scaling laws in different ranges of λ (see (4.1)) for a generic fore-and-aft-symmetric
intruder with axial curvature 1/Rz and a maximum radius a + δm. The shape of such an intruder is Δ(Z) =
4Z(1 − Z). The results are valid for δm � �, where � = 2

√
2δmR2

z /a . Prefactors for λ� 1 are provided by the
asymptotic theory.

neglected has to be checked in the individual cases. The forgoing results are summarized
in table 1.

The membrane tension profiles T (Z), obtained by integrating (4.2) subject to the
stress-free condition at the left-hand end (T−∞ = 0), are shown in figure 6(c) for a few
different λ. In the laboratory frame, the intruder moves leftward and the tube is fixed
at the right-hand end, so the tension approaches zero on the left-hand end of the tube
(which is stress free) and approaches a finite value T∞ on the right-hand end. This is
made clear in the limit λ1/2 � 1, where T (Z < 0) ∼ T−∞ = 0 due to the small U and
large H. Over the contact region, where U(Z) ≈ Δ(Z), we find T = Δ2(Z)/2 + O(λ1/2),
which is the only part of the tension that survives in the static dry limit. To the right,
however, the tension approaches the drag force on the intruder, having ‘picked up’ the shear
stress over the thin-film contact region, so T (Z > 0) ∼ T∞ = F � (

√
3/4)(λS0)

1/2. The
transition between T ∼ Δ2/2 over the film and T ∼ T∞ on the right of the object occurs
through the boundary layer at the film’s exit. This distribution of tension will remain
qualitatively intact for the full membrane theory (3.12). Observe that the shear stress,
which is the derivative of the tension, is restricted to 0 < Z < 1 for λ1/2, consistent with
the approximation (4.16).

The necessary condition for the thin-film approximation (dh/dz � 1) to apply is that the
intruder is slender: δm � � for moderate λ, and the slightly stricter condition λ1/5δm � �

for λ � 102. For small λ, dh/dz scales as λ1/2δm/� in the outer region and as δm/� in the
entry and exit regions. This means that the present thin-film analysis of the outer problem
for λ1/2 � 1 remains valid even for non-slender intruders even though this approximation
is inadequate in the entry and exit regions. Because the force is dominated by the outer
problem (see § 4.1.3), we speculate that F ∝ λ1/2 may persist for non-slender intruders
at small λ, although the modified flow in the entry region may select a different H∗ and,
therefore, a different prefactor for F . We note the subinear power-law dependence of the
force on the velocity is qualitatively similar to the experimental results of Tani et al. (2017).

4.3. Effect of intruder shape
We now consider slender intruders of arbitrary (but still axisymmetric) shape, still within
the hoop-stress-only approximation (4.1). The force on a slender intruder, according to
(4.17) (neglecting the influence of tension), is

F �
√

3
4

(S0λ)
1/2 or F � 3

√
2

2
π (EbμV)1/2 �

(
dδ

dz

)1/2
∣∣∣∣∣
z=0

. (4.21)
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Figure 7. (a) Dimensionless force F versus λ for objects of different shapes defined by (4.22). The drag force
for narrow-end-first motion (here, Zm = 0.9) is least, followed by a symmetric object (Zm = 0.5) and then
wide-end-first motion has the highest drag (here, Zm = 0.1). Note that the two asymmetric cases correspond to
the same physical intruder, but with their orientations flipped relative to the direction of motion. (b) Rescaled
force F/λ1/2 versus the slope at the entry region S0 = S(Z = 0) for different values of λ for intruders
prescribed by (4.22). The solid line is the prediction of (4.21), F � (3λS0/16)1/2. The inset plots the same data
on a logarithmic scale, showing that the scaling relation F ∝ S1/2

0 holds approximately even when λ = O(1).
All results have been obtained from a numerical solution of the lubrication equations (4.1).

Compared with the preceding subsection, we will no longer assume a parabolic shape,
which implies S0 = 4. Instead, S0 is now a free parameter. The result (4.21) predicts a
particularly simple dependence of the force on the intruder’s shape. For example, one
might ask which orientation of an egg travelling down an oviduct (Bradfield 1951) might
offer the least resistance? Equation (4.17) clearly favours a small value of S0, which occurs
if the intruder enters with its narrow (i.e. more gently inclined) side first.

We will now test these predictions using our numerical simulations of the lubrication
equations (4.1) by introducing a family of intruder shapes whose degree of asymmetry can
be varied systematically. For simplicity, we use piecewise functions

Δ(Z) = g(Z; Zm) ≡

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 −
(

Z − Zm

−Zm

)2

, Z ≤ Zm,

1 −
(

Z − Zm

1 − Zm

)2

, Z > Zm,

(4.22)

parameterized by 0 < Zm < 1. Defined this way, Δ(Z) is convex with a maximum value
of unity at Z = Zm, and is continuous in value and slope throughout. For Zm = 1/2 one
obtains the previous parabolic shape, whereas shapes with Zm < 1/2 are wider on the
left, which is the part that goes first. Conversely, shapes with Zm > 1/2 are increasingly
narrow toward the leading edge. Slopes at the entry and exit are S0 = 2/Zm and S1 =
−2/(1 − Zm), respectively.

We vary Zm between 0 and 1 to smoothly change the shape of the intruder and,
consequently, the slope S0. We solve the problem numerically for H(Z) and then compute
the force on the intruder using (3.13). Figure 7(a) shows that the force is indeed smaller
for intruders with smaller slope S0 at the entrance of the thin film contact region, as
predicted by (4.17). This qualitative prediction remains valid over the entire range of λ.
Thus, asymmetric intruders travelling narrow-end-first encounter a lower resistance than
the same object travelling wide-end first. This fore-and-aft symmetry breaking of the
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mobility of the object in spite of negligible inertia is a result of nonlinearities due to the
coupling between the fluid flow and the tube deformation.

To test the dependence of F on S0, we vary the shape of the intruder through the
parameter Zm at fixed λ. Figure 7(b) shows the force as a function of the entry slope S0 of
the intruder. Symbols represent numerical results of the hoop-stress (ε = 0) model, while
the solid curve is the prediction of (4.17) valid for small λ. The force increases relative
to this asymptotic prediction at larger λ, but the scaling F ∝ S1/2

0 appears to be relatively
robust over a wide range of λ (inset of figure 7b).

5. Results of membrane theory and comparison with DNS

Equipped with physical and mathematical insight into the solution structure and the
force from the preceding analysis, we will now address the full problem (3.12) coupling
nonlinear membrane elasticity with lubrication theory, in which tension enters both
the normal and tangential stress balances. We will see that the finite tension produces
a qualitative modification to the shape of the thin film relative to the hoop-stress
approximation of the previous section. The tension also produces a correction to the
propulsion force (4.17), to leading order in the radial deformation ε.

To solve (3.12) and compare the results with DNS, we set T−∞ = 0 (the left-hand end of
the tube is force free), so that T∞ is the force that must be exerted to move the object. We
solve the system of governing equations (3.12) numerically for the dimensionless pressure
P, displacement U and tension T using a relaxation procedure; details are outlined in
Appendix B. To compare the predictions of membrane theory with the simulations, we
focus on ellipsoidal intruders with axial half-width Rz = 2a and with a radial excess ε =
δm/a = 0.05. The walls of the tube in the simulations have thickness b = 0.001a so that
the bending rigidity of the tube is small.

Figure 8 shows the comparison between membrane theory and DNS of the
dimensionless tube shape U(Z) and the film thickness profiles H(Z) for this configuration
with different values of the dimensionless speed λ. In figure 8(a), for λ = 0.1, we see
that the membrane theory accurately reproduces the DNS for the deformation of the tube
U(Z). Also shown is the hoop-stress-only theory, which does surprisingly well at the entry
and over the contact region, but deviates at the exit. In particular, the tube displacement
approaches a finite negative value to the right of the intruder in the membrane theory and
DNS, while the hoop-stress model predicts a vanishing tube displacement, after a sharper
change of curvature around Z = 1 (inset of figure 8a).

At the entrance to the film the structure and λ1/2 axial scaling of the entrance (Z = 0)

discussed in the previous section persist. The results from both simulations and membrane
theory near Z = 0 collapse when plotted against the rescaled boundary layer coordinate
Z/

√
λ, as discussed in § 5. These results are also well described by the hoop-stress

approximation at the front (4.13a); as we will later show, a finite tension only produces
only a small correction at the film’s entrance.

The notable feature that is qualitatively different is the film thickness at the back of the
intruder (Z = 1), which now shows oscillations. These oscillations are absent from the
hoop-stress model and are a consequence of finite tension (finite ε) in the normal balance
of stress. Figure 8(c) emphasizes these features by plotting the film thickness versus a
new boundary layer coordinate (Z − 1)/(εkλ)1/3. The membrane theory again captures
these features of the DNS, whereas the hoop-stress model presents a qualitatively different
picture (monotonic growth of H over an axial scale λ1/2). The new boundary layer scale
(εkλ)1/3 can be rationalized by balancing the fluid pressure with the highest derivative
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0

U

H

Z

λ = 0.1

λ = 0.0333
λ = 0.1
λ = 1

λ = 0.0333
λ = 0.1
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(Z – 1)/(εkλ)1/3Z /λ1/2

(a)

(b) (c)

Figure 8. Tube displacement and film thickness profiles for an ellipsoid (Rz = 2a, ε = 0.05, b = 0.001a)
showing good agreement between DNS (described in § 2, markers) and solutions of the nonlinear membrane
theory (solid curves). (a) Radial displacement of the tube for λ = 0.1 with the prediction of the hoop-stress-only
theory indicated as a dashed curve. The hoop-stress-only theory is a good approximation except for near the exit
to the film Z > 1, where the membrane theory remains in excellent agreement with DNS. (b) Film thickness
profile versus the entry layer coordinate Z/

√
λ, showing excellent agreement between DNS and membrane

theory. The λ1/2 � 1 asymptotic solution of the hoop-stress theory at the entry (4.13a) is indicated as a dashed
curve. (c) Film thickness profile near the rear of the intruder obtained from DNS and membrane theory, showing
oscillations over a characteristic dimensional axial scale �(εkλ)1/3. This axial scale and the oscillations of film
profile are absent in the hoop-stress theory, which is indicated by the dashed line for λ = 0.1.

in (3.8a), which involves a membrane tension T = O(λ1/2). This scaling and the resulting
oscillatory structure at the back will be analysed in detail later in the next section.

5.1. Membrane theory for small speeds: λ1/2 � 1
Having established the accuracy of the membrane theory relative to the DNS, we now
analyse it in the limit of small speeds: λ1/2 � 1. The tension profiles T (Z) will turn out to
be qualitatively similar to the hoop-stress results shown in figure 3(c). We again separate
inner and outer problems. Outer problems occur over the dry contact region (0 < Z < 1)
as before, as well as over the non-contacting regions (Z < 0) and (Z > 1), which are now
non-trivial owing to a finite tension. As before, the inner problems resolve boundary layers
at the entry (Z = 0) and exit (Z = 1) regions and are necessary to match between outer
problems. There are two contact points, one at Z = 0 and another at Z = 1, where the
non-contacting and contacting regions of the solution meet. We discuss how these features
are modified and inform the solution for small non-zero λ.
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We analyse the governing equations of the full lubricated membrane theory (3.12) by
first considering the contact region (0 < Z < 1) where Δ = O(1) and H = O(1), so U ∼
Δ. Collecting terms of order λ0, one obtains

H − H∗

H3 = Δ′ + ενT ′ − εk(T Δ′)′′, (5.1a)

T ′ = ΔΔ′ + νεT Δ′ − εk(T Δ′)′Δ′, (5.1b)

valid for 0 < Z < 1, with the prime denoting the derivative with respect to Z. The second
equation is a linear equation of first order for T , which can be solved for a given intruder
shape Δ(Z). Substituting back into (5.1a) yields an outer equation that has the same form
as (4.4) as before, but with S(Z) replaced by Δ′ + ενT ′ − εk(T Δ′)′′, which is now known
from solving (5.1b).

To obtain a more transparent solution, we solve (5.1) to leading order in ε. To this end it
is sufficient to consider (5.1b) to order ε0, since in (5.1a) T is multiplied by ε. Integrating
(5.1b), this gives

T = Δ2/2 + T0, (5.2)

where T0 is a constant of integration; we will shortly show that T0 = 0 by consistency with
the tension-free left-hand end of the tube (see figure 6c). Then, (5.1a) becomes

H − H∗

H3 = Δ′ + νεΔΔ′ − kε
2

(Δ2Δ′)′′ − kεT0Δ
′′′ ≡ S̄(Z), (5.3)

where S̄(Z) is more complicated than S(Z), but is still given in terms of Δ(Z) alone;
observe the analogy between (5.3) and (4.4).

However, as opposed to the case without tension, the outer problems in the regions
outside contact (Z > 1 and Z < 0) no longer correspond to vanishing displacement, but
represent a membrane under tension (in the case T−∞ = 0, only Z > 1 has tension). The
lubrication pressure is small in these regions; taking (3.7a) without the lubrication pressure
p, since p ∝ 1/h2, and constant tension T ∼ T∞, one obtains (in dimensionless form)

U′′ = U
εkT∞

+ ν

k
, (5.4)

to the right of the contact zone (Z > 1). This equation admits the solution (Rallabandi
et al. 2019)

U = −ενT∞ + C exp
[
− Z − 1√

εkT∞

]
, for Z > 1, (5.5)

where the constant C is determined by matching to the inner (boundary layer) solution at
the exit Z = 1.

A similar analysis holds on the left of the intruder (Z < 0), where we now use the
condition that T−∞ = 0. The solution to the left of the intruder is then U = T = 0, and the
situation collapses onto the case of ε = 0 (see figure 3c). Near the left contact, H = O(1)

and Δ(0) = 0, so we identify U(0) = O(λ1/2). Substituting these conditions into (5.2) sets
T0 = 0, as expected from the dry static problem.

The key findings of the preceding analysis are (i) that the tension vanishes on the left
(T (Z < 0) = 0) and (ii) that the film thickness over the contact region is governed by
(5.3), which has the same form as (4.4), but with the substitution S(Z) → S̄(Z). For the
same reasons as in § 4.1.1 the outer problem in 0 < Z < 1 restricts H∗ ≤ 2/3

√
3S̄0, where

S̄0 = S̄(Z = 0), analogous to (4.7).
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Motion of a tightly fitting object through an elastic tube

As before, the inner solution around the entry region Z = 0 must set the value of H∗ in
conjunction with the upper bound discussed above. Because the tension is zero on both
sides of the entry point Z = 0 (with asymptotically small gradients) as discussed above,
it is negligible throughout the entry region and so the similarity equation for the structure
of the entry region remains the same as (4.9), but with the substitution S0 �→ S̄0 = S0(1 −
εkS2

0), where we have used (5.3) with T0 = 0. Thus, the entrance to the thin film in the
nonlinear membrane theory (3.8) with tension is analogous to the previous (ε = 0) analysis
where tension was neglected at the outset. We then simply invoke the analysis from § 4.1.2
and obtain (see (4.12))

H∗ = 2

3
√

3S̄0
= 2

3
√

3S0(1 − εkS2
0)

. (5.6)

The film shape in the entry region is given by (4.13a) with the substitution S0 → S̄0; the
result is virtually indistinguishable from the hoop-stress prediction for the parameters used
in figure 8(b).

At the right-hand (exit) boundary layer near Z = 1, the tension is non-zero and is of the
order of T∞, which we calculate now. Later, we will analyse how this tension influences
the shape of the film at the exit. We integrate (3.12b) for ε � 1 (consistent with the
approximation in (5.2)) and use (5.5) to find

F = T∞ = ε2ν2T 2∞
2

+ λ1/2
∫ ∞

−∞
4H − 3H∗

6H2 dZ + O(ελ1/2), (5.7)

where we have used T−∞ = 0. As above, we retain only contributions of the integral from
the outer solution 0 < Z < 1 where H = O(1) and we drop terms of O(ε2) to find

F = T∞ ∼ λ1/2
∫ 1

0

4H − 3H∗

6H2 dZ (5.8a)

�
√

3
4

(λS̄0)
1/2 �

√
3

4
(λS0)

1/2
(

1 − εk
2

S2
0

)
, (5.8b)

which is our main general result for the force on a slender intruder of arbitrary shape. The
second line (5.8b) estimates the integral (5.8a) by approximating H ≈ H∗ as before (see
(4.16) and (4.17)), using (5.6), and retaining terms up to O(ε). This result is consistent
with the zero-tension result (4.17) in the limit ε → 0 and with the static result (F = 0)

for λ→ 0. Observe that the correction relative to (4.17) scales with εkS2
0 = (δ′(z))2|z=0,

which quantifies the slenderness of the object and is, therefore, assumed small in the
lubrication and membrane theories. With the tension (5.8b) in hand, we can now analyse
the exit region.

5.1.1. Structure of film near the exit
To understand the exit region, we analyse the membrane equations (3.12) near Z = 1 for
small λ. Over the contact region (0 < Z < 1), the film thickness is O(1) governed by (5.3),
while on the right (Z > 1), the pressure is negligible (H is large) and the displacement
of the tube is given by (5.5). The tension near Z = 1 finite and is approximately T∞ =
O(λ1/2), established primarily by viscous friction over the contact region (see (5.8)).

A boundary layer of width L, to be determined, must connect the solutions across
Z = 1, so we define a boundary layer coordinate η = (Z − 1)/L. The film thickness,
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H must be O(1) within the boundary layer for consistency with the film solution. Near
Z = 1, Δ(Z) ∼ S1(Z − 1) = S1Lη, so the tube displacement U = Δ + λ1/2H is O(L).
Substituting these scaling arguments into (3.12a) shows that the term −kε(T U′)′′ (primes
denote Z-derivatives) has a dominant scaling kελ/L3. This term must compete with the
O(1) viscous pressure gradient (H − H∗)/H3, which then sets L = (εkλ)1/3. We therefore
define a new rescaled coordinate at the exit,

η ≡ Z − 1
(εkλ)1/3 . (5.9)

On substituting this scaling into (3.12b), we find that the tension is constant over the
boundary layer at the exit, up to corrections of O(L). Thus, we approximate T ∼ T∞ =
λ1/2τ across the exit Z = 1, where τ ≈ √

3S0/16(1 − εkS2
0); see (5.8b). With these

asymptotic approximations, (3.8a) within the boundary layer at the back reduces to

S1 + β
dH
dη

− τ
d3H
dη3 = H − H∗

H3 , where β = λ1/2

(εkλ)1/3 = λ1/6

(εk)1/3 . (5.10)

The first two terms of (5.10) represent the pressure gradient due to the hoop stress,
which survive the rescaling in the boundary layer. We note that β dH/dη is formally
subdominant as λ→ 0 but singular for a finite λ for ε → 0 and so we retain this term to
match correctly onto the tube solution (5.5) as η → ∞. Towards the left the film thickness
must approach a constant, and towards to right the film thickness must grow linearly so
that the tube displacement approaches the constant −ενT∞. These arguments yield the
boundary conditions

H ∼ H1, as η → −∞, (5.11a)

H ∼ −S1ζ

β
, (5.11b)

where H1 is the film thickness at the right-hand edge of the contact region, obtained as the
solution to the algebraic equation (5.3) evaluated at Z = 1. Note that we have neglected
the terminal tube displacement −ενT∞ in (5.11) as it is O(ε) smaller than the accuracy of
(5.10), though this is straightforward to include.

Numerical solutions to the third-order differential equation (5.10) subject to (5.11) are
plotted in figure 9(a) as solid curves and are in good agreement with rescaled numerical
solutions of the membrane theory (markers connected by dashed lines), particularly for
small λ. We observe that the solutions depend on β and are, therefore, not universal across
different values of λ. These solutions were obtained using a shooting procedure starting
from the left, where a linearization of (5.10) in the limit β � 1 yields the asymptotic
behaviour

H(η → −∞) ∼ H1 + A1eση/2 cos(σ
√

3η/2 + A2), (5.12)

with σ = ((3H∗ − 2H1)/(H4
1τ))1/3, and where A1 and A2 are constants of integration. For

the parabolic shape (4.5) and ε � 1, σ � 6.747. Thus, the film thickness profile at the exit
oscillates as it approaches the outer solution on the left due to finite tension, analogous
to the case of long bubbles moving through tubes (Bretherton 1961). For finite β the
structure of (5.12) remains similar but with a modified σ . We compute numerical solutions
by iterating with respect to A1 and A2 until the solution satisfies (5.11b), corresponding to
a prescribed slope and zero curvature. The asymptotic behaviour (5.12) is made clearer
in figure 9(b), where horizontally shifted versions of thickness profiles are plotted, which
now collapse onto (5.12) over the range where H − H1 remains small.
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Figure 9. (a) Film thickness near the exit region comparing numerical solutions of the nonlinear membrane
theory (3.8) (markers connected by thin dashes) and solutions of (5.10) at the rear of the intruder (thick solid
curves). (b) The similarity solution structure becomes clearer when the curves are shifted horizontally, so that
the shifted profiles have minima at Z = 1. For λ = {0.01, 0.033, 0.1}, the shifts are {0.0353, 0.220, 0.354},
respectively. The dot–dashed curve is (5.12), with A1 = 0.026, A2 = 7π/6.

Towards the right of the intruder, the pressure is small, and so the film thickness grows
as (suppressing exponentially growing solutions)

H(η → ∞) ∼ −S1η

β
+ C1 + C2e−η

√
β/τ . (5.13)

This means that U(η → ∞) ∼ λ1/2C1 + λ1/2C2 exp{−(Z − 1)/
√

εkT∞}, matching the
outer solution (5.4) on the right. Since T∞ = O(λ1/2), the characteristic length scale for
the approach to the tube is ε1/2k1/2λ1/4, which is distinct from the characteristic scale
(εkλ)1/3 of oscillations towards the film; (5.10) incorporates both of these regions. The
horizontal shifts in the profiles of figure 9(b) can thus be understood as the result of
matching the solutions of (5.10) across these two length scales in the limit β � 1.

5.2. Force on the intruder
We now discuss the force on the intruder and first compare asymptotic theory (5.8)
with numerical solutions of membrane theory. We focus on a symmetric intruder with
a parabolic shape (4.5) and restrict our attention to ν = 1/2 and fix k = 1/8, which
corresponds to a spherical intruder for small ε. To quantify the dependence of the force on
ε, in figure 10(a) we plot results of membrane theory for the force F for different values
of ε with a symmetric intruder and with the parabolic shape approximation. As predicted
by the analytic result (5.8), we find that the dependence of F on λ for small ε is close to
the ε = 0 (hoop stress only) limit. The force decreases with ε for small λ, in quantitative
agreement with (5.8) for λ � 0.1 at least up to ε = 0.3. Increasing λ beyond unity, the
effect is surprisingly reversed, with the force increasing with ε at a fixed λ.

Finally, we compare the force required to move the intruder in the membrane theory
and DNS. Here we consider ellipsoidal intruders with Rz = 2a and ε = 0.05; in the DNS
we also use b = 0.001a and L = 25a. Figure 10(b) plots the dimensionless force F =
F/Fs versus λ, showing good agreement between the simulations and membrane theory.
In DNS, we first calculate the steady-state force F according to (2.7) and rescale by Fs =
2πEbδ2

m/a. For λ � 10−2, the agreement is quantitative, and approaches the analytical
estimate (5.8b). For larger values of λ, we find the approximate scaling F ∝ λ2/3 to hold in
both the membrane theory and the simulations. We note that this scaling was also observed
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Figure 10. (a) Rescaled force F/
√
λ versus ε at different λ obtained from membrane theory for a parabolic

intruder with k = 1/8. The theoretical prediction (5.8) provides a good approximation to the numerical results
for small λ up to ε ≈ 0.4. For small λ, the force decreases slightly with ε as predicted, whereas it increases
slightly with ε for λ � 1. (b) Force required to move an ellipsoid (Rz = 2a, ε = 0.05) with b = 0.001a as
obtained from DNS, the hoop-stress model and membrane theory for different values of λ. Lines show the
asymptotic prediction (5.8b) for λ1/2 � 1 and the λ2/3 scaling for moderate λ (dashed), suggested by the
hoop-stress-only theory (table 1). Including the additional force Fp due to the resistance of the tube (crosses)
further improves the agreement between DNS and membrane theory.

in the hoop-stress model at intermediate values of λ, see (4.3), table 1. As expected, the
hoop-stress model produces a reasonable approximation to the force for the small ε used
here.

At each λ tested, the force in the simulations is greater than that predicted by the
membrane theory. The primary reason for this difference is the viscous resistance of the
tube itself, given by (3.14), which was neglected in the membrane theory. Accounting
for this extra resistance by means of the superposition F + Fp (with F produced by
membrane theory), we recover the simulation results to within a maximum error of
< 4 % for λ ≤ 0.1. For λ ≥ 1, this superposition overestimates the force from DNS (by
approximately 20 % for λ = 9), likely due to the longer-range features at the entry and
exit making the separation between the lubricated and Poiseuille flows less clear cut.
Nevertheless, at each λ studied here, the superposition of lubrication and Poiseuille
contributions is closer to the DNS result than the lubrication result alone (figure 10b).

6. Discussion and conclusions

We have analysed the inertialess fluid dynamics of a slender close-fitting particle or
intruder through a lubricated elastic tube in the situation where the intruder is wider than
the tube. Membrane theory for the deformation of the tube coupled to lubrication theory
for the flow provides insights into results of DNS for slender intruders moving through
thin-walled tubes.

For small speeds, the fluid film adopts a boundary layer structure near the entrance and
the exit regions, which support the thin-film region over the intruder. At the entry and over
much of the intruder surface, axial tension in the tube exerts only a small effect on normal
stresses and so the flow is well-approximated by a simpler hoop-stress-only approximation
that neglects tension. However, at the exit the finite tension exerts a dominant normal stress
due to the curvature of the tube surface and balances the fluid pressure, even in the limit of
slender objects and vanishing speeds. The hoop-stress model fails to capture this dominant
balance at the exit, whereas the membrane theory correctly reproduces the results of DNS.
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Motion of a tightly fitting object through an elastic tube

The effect of tension on the flow is, therefore, not negligible even at small speeds and for
slender objects.

The force necessary to move the object through the tube increases with the velocity
and exhibits power law behaviours in some limits. The force was found to have a simple
dependence on the shape of the intruder. For asymmetric intruders, the force is smallest
when the intruder translates with its more gently sloped face first. Of particular note is our
conceptually simple result (4.17) and its refinement (5.8), which make precise the roles of
asymmetry and tension. Since the film thickness is selected at the entry, a smaller slope at
the front produces a smaller resistance. It is tempting to apply this idea to problems like
the motion of eggs through the oviduct, but the evidence for laying with either the pointed
or the blunt end first is inconclusive (Bradfield 1951; Salamon & Kent 2014). Finally it
was shown that the force predicted by membrane theory agrees well with the results of full
numerical simulations over a wide range of λ for slender intruders, particularly when then
former is corrected to account for the resistance of the tube.

In our formulation, we have assumed that the tube is filled with fluid. Another possible
set-up would be a film of finite thickness precoating the tube, in which case the resistance
necessary to maintain a Poiseuille flow far from the intruder would disappear. As long
as the selected film thickness H∗ is smaller than the precoated thickness, this will have
a minor effect on the entry region, where fluid accumulates. However, the presence of a
meniscus could change the exit region (without an effect on the drag for small speeds),
where the tube surface is starved of liquid. If the precoated thickness were thinner than
the value set by H∗, the thickness of the lubricating layer would become independent of
speed, so that the total drag would be proportional to the speed.

We estimate that λ is small in typical macroscopic benchtop experiments. For a
1 cm-wide tube made of a 1 mm-thick typical soft material (E ≈ 1 MPa) filled with
viscous oil (μ = 1 Pa s) and a spherical object with oversize ε = 0.1 travelling through it
at 1 cm s−1, we estimate λ ≈ 0.05. A somewhat larger λ may be achievable with a softer
material and a smaller λ with a less viscous fluid. Thus, we expect that the resistance due
to lubrication in the thin film should dominate and the resistance of the tube to be a small
correction.

A related configuration to the one discussed here is to drive the motion of the object by
imposing a pressure drop ΔP across the ends of the tube rather than by prescribing a force.
The limited numerical evidence of Lighthill (1968) would suggest that the approximation
of the type F ≈ 2Rz(ΔP)/L, with F given by the present membrane theory (which assumes
zero pressure drop across the tube), may provide a reasonable approximation of the speed
of the intruder for a given pressure drop, at least for small speeds. Though appealing for its
simplicity, such an estimate should be tested more systematically within a self-consistent
theory that accounts for both the lubricated flow and the pressure gradient within the tube.

We have focused on objects with a single contiguous region of dry contact. An object
with a more complex shape, for example one with an undulatory surface, may contact the
tube over multiple regions in the static limit. At small speeds (λ� 1), this may result in
multiple thin film regions, each with its own entrance and exit regions. We speculate that
these features may widen and merge at larger λ, but understanding how this occurs requires
a detailed analysis of more complex geometries.

Perhaps the most significant unresolved questions concern (i) the validity of the
lubrication equation, for example in the case of intruders that are not slender, and (ii)
the effect of a finite bending rigidity of the tube in the theory. In DNS of lens-like shapes
(oblate ellipsoids) travelling face-first through the tube, we find that the film thickness
shows significant oscillations near the exit. These are greater in amplitude and longer in
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Figure 11. Film thickness profiles at ε = 0.05 and λ = 0.1 for (a) lens-shaped objects in thin-walled tubes
(Rz = 0.5a, b = 0.001a) and (b) pill-shaped objects in thick-walled tubes (Rz = 0.5a, b = 0.001a). In both
cases the simulations (symbols) show undulating features near the exit that are more pronounced and longer
ranged than those of membrane theory (curves).

wavelength than can be accounted for by the membrane theory developed here, as shown
in figure 11(a) for an ellipsoid with Rz = 0.5a and ε = 0.05 travelling at λ = 0.1 in a tube
with b = 0.001a. Lubrication theory is challenged since the slopes are no longer small at
the entry and exit; at the entry ∂δ/∂z|z=0 ≈ 0.64 for the case plotted in figure 11(a).

Qualitatively similar features are also observed for slender objects travelling in a
thick-walled tube as seen in figure 11(b); here Rz = 2a and b = 0.02a, other parameters
being the same as before. Now, the bending rigidity of the tube is greater than before
and introduces a normal stress proportional to Eb3 d4ur/dz4 on the right of (3.7a). Due
to the high derivative order of this term, it is conceivable that the bending rigidity is
also important in the lens-like configuration of figure 11(a) due to its smaller axial length
scale, despite the thinner walls. We also note that the contact area in the dry (static) limit
of λ→ 0 is reduced by a finite bending rigidity, which may further modify the structure
of the flow.

It would be interesting to explore these questions by developing a modified form of the
membrane theory and testing its predictions against DNS of the fluid–structure problem.
Such modifications may include stresses due to bending rigidity or a reformulation of
lubrication theory in a boundary-fitted coordinate system to ease the restriction to small
slopes. One may also consider tubes stretched at both ends, which introduces a finite
tension throughout the tube. Equally, one might consider nonlinear elastic materials, and
how the use of such a material might be used to reduce drag. However, our previous
experimental and theoretical work on the ‘dry’ version of the intruder problem (Rallabandi
et al. 2019) indicated that a simple neo-Hookean assumption performs surprisingly well.
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Motion of a tightly fitting object through an elastic tube

Appendix A. 3-D full simulations

The numerical technique used in this study is a variation of that developed by Herrada
& Montanero (2016) for interfacial flows and extended by Snoeijer et al. (2020) to
hyperelastic solids. The spatial domain occupied by the fluid is mapped onto a rectangular
domain by a non-singular mapping (here z is the axial coordinate fixed in the lab frame)

r = f1(ξ, χ1, t), z = g1(ξ, χ1, t), [0 ≤ ξ ≤ L] × [0 ≤ χ1 ≤ 1], (A1)

where the shape functions f1 and g1 are obtained as part of the solution. In order to capture
large anisotropic deformations, the following quasi-elliptic transformation (Dimakopoulos
& Tsamopoulos 2003) was applied

g22
∂2f1
∂ξ2 + g11

∂2f1
∂χ2

1
− 2g12

∂2f1
∂ξ∂χ1

= Q, (A2a)

g22
∂2g1

∂ξ2 + g11
∂2g1

∂χ2
1

− 2g12
∂2g1

∂ξ∂χ1
= 0, (A2b)

where the coefficients take the form

g11 =
(

∂g1

∂ξ

)2

+
(

∂f1
∂ξ

)2

, g22 =
(

∂g1

∂χ1

)2

+
(

∂f1
∂χ1

)2

, g12 = ∂g1

∂χ1

∂g1

∂ξ
+ ∂f1

∂χ1

∂f1
∂ξ

,

(A2c)

with

Q = −
(

∂D1

∂χ1

∂f1
∂ξ

− ∂D1

∂ξ

∂f1
∂χ1

)
J

D1
, J = ∂g1

∂χ1

∂f1
∂ξ

− ∂g1

∂ξ

∂f1
∂χ1

, (A2d)

and

D1 = εp

√√√√[(
∂f1
∂ξ

)2

+
(

∂g1

∂ξ

)2
]/[(

∂f1
∂χ1

)2

+
(

∂g1

∂χ1

)2
]

+ (1 − εp). (A2e)

In the above expressions, εp is a free parameter between 0 and 1 where the case εp = 0
corresponds to the classical elliptical transformation. All the simulations in this work were
conducted using εp = 0.2.

The spatial domain occupied by the elastic solid in the current state, x(t), and in the
reference state, X , are also mapped onto rectangular domains by means of non-singular
mappings in the form

r = f2(ξ, χ2, t), z = g2(ξ, χ2, t), (A3)

R = F2(ξ, χ2, t), Z = G2(ξ, χ2, t), [0 ≤ ξ ≤ L] × [0 ≤ χ2 ≤ 1], (A4)

where again the functions f2, g2, F2 and G2 should be obtained as a part of the solution.
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These functions are determined according to

g2 = ξ, (A5a)

F2 = a + bχ2, (A5b)

∂F2

∂t
+ vs · ∇F2 = 0, (A5c)

∂G2

∂t
+ vs · ∇G2 = 0. (A5d)

Note that (A5a) guarantees that the discretization used for ξ is applied automatically to z.
Equation (A5b) indicates that at the initial stage the elastic solid is a perfect cylinder
of inner radius a and thickness b. Finally, the inverse Lagrangian map (A 5c)–(A5d)
(Kamrin, Rycroft & Nave 2012) makes a connection between the Eulerian formulation for
the conservation of momentum equation for the solid (2.2) and the Lagrangian formulation
for the elastic stress, allowing the determination of the deformation generated by transport
by the solid velocity vs.

Some additional boundary conditions for the shape functions are needed to close the
problem. At the tube entrance (right-hand end of the domain), we impose

g1 = L, f1 = f2(L, 0, t)χ1, (z = ξ = L), (A6a)

while at the tube exit (left-hand end), we use

g1 = 0, f1 = f2(0, 0, t)χ1, (z = ξ = 0). (A6b)

On the axis, we impose

∂g1/∂χ1 = 0, f1 = 0, (r = χ1 = 0), (A6c)

while at surface of the intruder

g1 = ξ, f1 = R1(z, t), (χ1 = 0, z0(t) ≤ z = ξ ≤ z1(t)). (A6d)

At the inner elastic surface, we impose

f1 = f2, g1 = g2, (0 ≤ z = ξ ≤ L, r = h1(z, t), χ1 = 1, χ2 = 0). (A6e)

The unknown variables in the liquid domain are f1, g1, p, vz and vr while the unknown
variables in the solid domain are f2, g2, ps, vsz, vsr, F2 and G2. All the derivatives appearing
in the governing equations are expressed in terms of χ , ξ and t. The resulting equations
are discretized in the χ direction with nχ1 and nχ2 Chebyshev spectral collocation
points in the liquid and solid domains, respectively. Conversely, in the ξ direction we
use fourth-order finite differences with nξ equally spaced points in the liquid and solid
domains, respectively. The results presented in this work were carried out using nξ = 4010,
nχ1 = 9 and nχ2 = 7. The time derivatives are discretized using second-order backwards
differences. Since the method is fully implicit, time steps were taken sufficiently large
to reach quickly the steady-state regime for the force. The resulting system of nonlinear
equations is obtained at each time step by solving all equations simultaneously (a so-called
monolithic scheme) using a Newton–Raphson technique. One of the main characteristics
of this procedure is that the elements of the Jacobian matrix J ( p,q) of the discretized
system of equations are obtained by combining analytical functions and collocation
matrices. This allows us to take advantage of the sparsity of the resulting matrix to reduce
the computational time at each Newton step.
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Appendix B. Numerical solution of membrane theory

For a numerical solution of the full steady-state problem combining membrane tension
and lubrication we have to solve the system (3.8) or its rescaled version (3.12), and find
the unknown parameter H∗ as part of the solution. The strategy that we used to solve the
hoop-stress-only (ε = 0) version of the problem (guessing H∗ and shooting to the correct
value) fails in the general case since it is difficult to find a solution that connects large
positive Z to large negative Z. Instead, we use an iterative solution strategy that allows
relaxation to the correct steady-state solution. To this end we introduce a time-dependent
form of (3.12) that involves a time-dependent thin-film equation coupled with the nonlinear
equations for the deformation of the tube.

Using dimensionless variables and denoting dimensionless time by t, this system of
equations is

∂H
∂t

= ∂

∂Z

(
H3 ∂P

∂Z
− H

)
, (B1a)

P = U + νεT − kε
∂

∂Z

(
T ∂

∂Z

)
, (B1b)

∂T
∂Z

= P
∂U
∂Z

+ λ1/2
(

H
2

∂P
∂Z

+ 1
6H

)
. (B1c)

These equations describe the evolution of the film thickness starting from arbitrary initial
conditions: at steady state, (B1a) reduces to (3.2). It is useful to eliminate P between (B1b)
and (B1a) to obtain an evolution for U involving T ,

∂H
∂t

= ∂

∂Z

{
H3
[
∂U
∂Z

+ νε
∂T
∂Z

− kε
∂2

∂Z

(
T ∂U

∂Z

)]
− H

}
, (B2)

where we recall that H = λ−1/2(U − Δ) by definition.
We solve the system (B1a), (B1c), (B2), with a second-order central difference scheme

in space and a first-order backward Euler integration in time. We start with initial guesses
for the pressure P(n)(Z) and displacement U(n)(Z), where the superscript denotes time
levels. We then integrate (B1c) numerically, subject to the single condition T (Z →
−∞) = 0, to obtain the tension T (n)(Z). Next, we integrate the fourth-order nonlinear
equation (B2) (after substituting H = λ−1/2(U − Δ) ) through a time interval δt using a
linearized backward Euler scheme (see e.g. Moin 2010), subject to boundary conditions
U = −ενT and U′ = −ενT ′ at Z → ±∞, which follow from (B1b), see the discussion
below. This yields the displacement at the next time step U(n+1)(Z). We use this solution
to estimate ∂H/∂t and finally solve (B1a) for P(n+1)(Z) subject to vanishing pressure at
both ends of the tube. This sequence of steps is repeated until steady-state solutions are
obtained simultaneously for U, T and P. The axial force on the tube is then extracted from
the solution as F = T (Z → ∞).

The numerical results including tension in the main text are for (4.5) Asymptotic
solutions for T , U and P as Z → ±∞ are useful as boundary conditions for the numerical
solutions. Far away from the intruder (Z �→ ±∞), U remains bounded while Δ ∼ −4Z2.
At steady state, (B1a) behaves as P′ ∼ H−2, which (using H = (U − Δ)/

√
λ) integrates

to

P(Z → ±∞) ∼ − λ

48Z3 . (B3)
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Substituting this relation into (B1c) and integrating yields

T (Z → ±∞) ∼ T±∞ − λ

6Z
. (B4)

Finally (B1b) yields

U(Z → ±∞) ∼ −νε

(
T±∞ − λ

6Z

)
. (B5)
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