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Modern inertial microfluidics routinely employs oscillatory flows
around localized solid features or microbubbles for controlled,
specific manipulation of particles, droplets, and cells. It is shown
that theories of inertial effects that have been state of the art
for decades miss major contributions and strongly underestimate
forces on small suspended objects in a range of practically rele-
vant conditions. An analytical approach is presented that derives a
complete set of inertial forces and quantifies them in closed form
as easy-to-use equations of motion, spanning the entire range
from viscous to inviscid flows. The theory predicts additional
attractive contributions toward oscillating boundaries, even for
density-matched particles, a previously unexplained experimen-
tal observation. The accuracy of the theory is demonstrated
against full-scale, three-dimensional direct numerical simulations
throughout its range.

inertial microfluidics | oscillatory flows | particle manipulation

D escribing effects of small, but finite, inertia on suspended
particles is a fundamental fluid-dynamical problem that has
never been solved in full generality (1-6). Modern microflu-
idics has turned this academic problem into a practical challenge
through the use of high-frequency (w~ kilohertz to megahertz)
oscillatory flows, perhaps the most efficient way to take advan-
tage of inertial effects at low Reynolds numbers, to precisely
manipulate particles, cells, and vesicles without the need for
charges or chemistry (7-9). The systematic theoretical under-
standing of flow forces on particles has so far hinged on the
pioneering work of Maxey and Riley (MR) (10), introduced
almost 40 years ago and encompassing a number of special-
ized approaches (11-13), including acoustic secondary radiation
forces (SRFs) that have been invoked to rationalize observed
attractive forces toward localized features in oscillatory flows
(8, 14-17). However, recent experimental (18) and theoreti-
cal (19) advances have shown that the classical MR theory
falls significantly short of explaining the magnitude of attrac-
tion. We demonstrate here theoretically and computationally
that previously unrecognized, significant forces act toward oscil-
lating boundaries, even on neutrally buoyant particles, stem-
ming from the interplay of particle inertia, flow gradients, and
flow curvature. These forces cannot be understood quantita-
tively or qualitatively by MR (or SRF) and, instead, natu-
rally emerge from a systematic generalization of MR, paving
the way for enhanced and novel inertial microfluidic applica-
tions of great potential benefit in biomanufacturing, health,
and medicine.

Oscillatory microfluidics is usually set up by or past a localized
object [e.g., a microbubble or a no-slip solid (8, 20)], resulting
in spatially nonuniform flows characterized by strong variations
on gradient Lr and curvature L, length scales. Such flows exert
remarkably consistent and controllable forces on particles and
have been employed with great success for guidance, separation,
aggregation, and sorting (9, 14, 21-25). Nonetheless, it is pre-
cisely this use of localized oscillations in modern microfluidics
that is now pushing the envelope of the MR equation, exposing
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its limits in predicting the emergence and magnitude of observed
significant and persistent forces. Here, we provide a thorough
revision of its theoretical foundations, but first, in light of the
importance of this work for applications, we state a major prac-
tical outcome: In any oscillatory background flow field U asso-
ciated with a localized object, a density-matched (p) spherical
particle of radius a, experiences an attractive force toward the
object. The component of this force along the object-to-particle
connector e takes the explicit form

Fro=my {(a]VU:VVU) F(X) e, [1]

where my =4mpa? /3 is the displaced fluid mass and the inner
product represents the interaction of flow gradients and cur-
vatures. Force [1] is steady, resulting from a time average (-).
The effect of oscillation frequency is quantified by the univer-
sal, analytically derived function F of the Stokes number A.
For harmonic oscillatory flows, A= a’w/(3v) and to excellent
approximation F () reads

1 9 3
f(A):§+T6\/ﬁ’ [2]

valid over the entire range from the viscous A < 1 to the invis-
cid A>1 limits. In practice, [1] moves a particle against its
Stokes mobility along a radial coordinate measuring distance 7,
from the localized object, so that the steady equation of motion
becomes simply
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with v the kinematic viscosity of the fluid. For generic flows,
Fr,. <0, since the amplitude of U decays with distance from
the oscillating object, indicating attraction. If an additional
steady-flow component is present, Eq. 3 quantifies the deviation
between particle and fluid motion.

The above equations completely describe the particle dynam-
ics and stem from a rigorous, general formalism developed
below to respond to discrepancies observed experimentally.
Indeed, as illustrated in Fig. 1 A and B, when neutrally buoy-
ant particles of moderate A approach the surface of oscillating
bubbles (cf. refs. 9, 24, 32, and 33), we find evidence of sig-
nificant radial attractive forces, even at a considerable distance
from the bubble. This observation is in direct contradiction to
existing theories such as SRF (8, 14, 16, 18, 19, 22, 23, 26—
31), which either predict no attraction at all or a much too
weak effect (see legend of Fig. 1 and SI Appendix for more
details).

Our goal here is to develop a unifying theory that explains
observations, accounts for particle inertia, and seamlessly spans
the full viscous-to-inviscid operational flow spectrum. Accord-
ingly, we revisit MR (10) and systematically account for
all leading-order terms in particle Reynolds number Re, =
ap, U™ /v, with U™ the velocity scale of the background flow. We
then reveal their effect through a specially constructed case:
a bubble of radius a; oscillating in pure volume (breathing)
mode, with a spherical, neutrally buoyant particle placed at an
initial center-to-center distance r,(0). This scenario induces no
rectified (streaming) flow in the absence of the particle (34)
and, therefore, allows for the precise evaluation of the newly
considered disturbance flow effects introduced by the particle
itself. The analysis is complemented by direct numerical sim-
ulations (DNSs) that provide first-principle solutions of flow
field and particle displacement. Fig. 1 C, Upper shows that
the computed oscillatory-flow component closely resembles the
background flow, even in the presence of the particle, while
time-averaging over an oscillation cycle (Fig. 1 C, Lower) reveals
the much richer secondary steady disturbance flow induced by
the particle.

Like MR, we wish to describe the hydrodynamic forces
on a particle centered at r, using only information from
the given undisturbed background flow U. We fix a (mov-
ing) coordinate system at r, and nondimensionalize lengths

by a,, times by w™', and velocities by U* (using lower-

case letters for nondimensional velocities). A spherical parti-
cle exposed to a known (laboratory-frame) background flow
u and moving with velocity u, (neglecting effects of rotation)
then experiences the effects of the undisturbed flow w® =& —
u, and a disturbance flow w(*). Following ref. 10, the latter
obeys

(1)
21 _vp(l) :3>\8:;7t + Re,f,

F=w®@ . Tp® 4y Tp® 4D gy

where [4]

with boundary conditions w) =u, —i on r=1, and w) =0
as r— oo.

This equation is exact and does not rely on small Re,. To
obtain explicit results, we use two expansions: One, like MR,
expands the background flow around the particle position into
spatial moments of alternating symmetry:

w=ial,+r-E+rmr:G+..., [5]

where E = (a,/Lr)Vi|., and G = % (a; /L2)VVily, capture the
background-flow shear gradients and curvatures, whose scales
are, in practice, much larger than a,, justifying [5].

The other cornerstone of our theory is a regular perturbation
expansion of all variables in [4], using subscripts for orders of
Re,, e.g., w =wl" + Re,w!" + O(Re?). In contrast to MR,
this retains a term Re,f,, in [4], where f, =w(®) - Vw(()l) +w(()1) .
w(©® 4 wél) . Vwél) is the leading-order nonlinear forcing of the
disturbance flow. Note also that wél) is purely oscillatory, while
wl(l) has a nonzero time-average, exemplified by the flow in Fig.
1 C, Lower.

Forces on the particle, as integrals of the fluid stress tensor
over the particle surface S, are also expanded in this fashion.
Application of a reciprocal theorem (cf. ref. 2) formally yields
the inertial force components as volume integrals over the entire
fluid domain without the need to explicitly compute the flow
field at that order. The reciprocal theorem employs a known test

—— Particle trajectory
Initial/final streamlines
—— Streamlines

! |
."’ / |
Time-averaged velocit
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Fig. 1. Particle attraction to oscillating bubbles. (A) A polystyrene particle (a, = 10um, X ~ 4) is transported past an oscillating microbubble (a, =40um,
w/(2m) = 20 kHz). (B) Close-up of the experimental trajectory (red) of a neutrally buoyant particle intersecting streamlines (blue), indicating a net attraction
toward the bubble over fast time scales of a few milliseconds, unexplained by existing theories: Inertial particle migration due to shear gradients (4, 26,
27) is far slower; the SRF of acoustofluidics (22, 28-31) is proportional to the particle-fluid density contrast and thus vanishes here; an ad hoc theory for
nearly inviscid flows (A > 1) from ref. 19 predicts an attraction much too weak to explain observations. A detailed discussion of this particular experiment
in the context of our analysis is provided in S/ Appendix. (C) Simulation of the prototypical problem: a particle exposed to the flow of a bubble oscillating
in volume mode at relative amplitude e. (C, Upper) Instantaneous streamlines (color bar is flow speed in units of U*). (C, Lower) Time-averaged streamlines

(color bar is steady-flow speed in units of eU*).
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flow u’ = u'(t)e in a chosen direction e. The component of the
equation of particle motion in that direction, to O(Re,), is then

o = FO 4 FY 4Re, (O FY) + ORe),  [6a]
F{ Fs (3\0@a)-edV, [6b]
6m Jy
AV = Fs 1 / M (6" -n)dS }, [6¢]
6m S o’
po _ Fs / (u-Vit)-edV (6d]
1 6T \% ’
Fy ,_ 1 L
Fl(l):_a[’ 1{5/‘/u/.‘f0dv}7 [6e]

where o’ is the stress tensor of the test flow, hats denote Laplace
transforms, and £~! their inverse. All dimensional forces have
the common Stokes drag scale Fis /6 =vpa, U™.

Eqgs. 6b and 6d are forces exerted by the background flow,
while Egs. 6¢ and 6e stem from the disturbance flow. The origi-

nal MR equation contains Féo) and Fél), but only part of Fl(o),

while the particle inertia force Ffl) has not been described pre-
viously. We shall show that these unrecognized contributions are
not small corrections, but are dominant in relevant applications,

particularly the inertial disturbance force Fl(l).

Results

The outlined formalism is entirely general for arbitrary back-
ground flows and provides analytical expressions for the forces

Fl(o) and Ffl). The former straightforwardly reads

2
Fg

=G, (7]

where ]-'1(0) =1/5(39).

The force Fl(l), by contrast, is generally composed of various
contributions involving the expansion coefficients of Eq. 5; cf.
Materials and Methods and SI Appendix. However, it simplifies
greatly in oscillatory background flows that are potential: This
condition is fulfilled in almost all cases, requiring only that the
distance h, between the particle and object surfaces is greater
than the Stokes boundary-layer thickness ds = y/2v/w, which
simplifies to the easily satisfied condition A > (a,/hy,)?. Then,
the only way to construct a force vector from a contraction of
the higher-rank tensors E and G is E : G (cf. refs. 36 and 37). If,
furthermore, the particle is neutrally buoyant, the slip velocity u.
vanishes, and we obtain

FY 4
A= 5 (E:GreFI(), (8]

where the function ]—"1(1>(/\) is determined analytically (see SI
Appendix for details) and is universal, i.e., valid for arbitrary
flow fields. While both Egs. 7 and 8 need nonzero gradient and

curvature terms of the background flow, ]-'1(1)(/\) captures the
nonlinear effect of inertia of the leading-order unsteady distur-

bance flow wé1> on the particle. For micrometer-size particles,

where A~ 1, ]-'1(1> is considerably larger than .Fl(o), so that Eq. 8
is the dominant effect in practical microfluidic applications. The
sum of both contributions Eqs. 7 and 8 results in the dimensional
force Eq. 1, before time-averaging.
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We now turn to the prototypical oscillatory flow example of
Fig. 1C. This flow field’s unique scale is the bubble radius (Lr =
L, = ay). With an oscillation amplitude of ea, (¢ <1 in practi-
cal situations), the velocity scale is U™ = easw, and we anticipate
the relevant rectified (time-averaged) force to lead to irreversible
particle motion proportional to € (cf. ref. 19). It is advantageous
to change the length scale to a; here, introducing o= a,/as,
and to change the coordinate origin to the bubble center, so that
the background flow has only one component @ = sin ¢/r? in the
direction e =e,.. The oscillatory forces and the particle motion
now follow explicitly (Materials and Methods).

Our ultimate goal is to predict the rectified trajectory of the
particle after time-averaging over the fast oscillatory time scale,
to provide practically useful guidance for precision applications.
Time-scale separation using the slow time T =¢?¢ analogous
to ref. 19 (Materials and Methods) obtains the leading-order
equation for the rectified particle motion 7, (7')

d'/'p _ E 2
aT = rgoz AF(A), 91

where F(\) = FM (N) + .7-"1(0). Eq. 9 is readily solved analytically
and is analogous to the result Eq. 3. Indeed, while the analytical
form of the universal function fl(l) is complicated (SI Appendix),
one can Taylor expand in both the viscous limit (A — 0) and the
inviscid limit (A — 00) to obtain

v_9 /3 i1
=6\ oy TOM, F=g+01/ VY. 0]

The simple sum of these leading terms yields the uniformly valid
expression [2] for the total dimensionless force F(\) on the par-
ticle. Note that our derivation is based fundamentally on the
presence of both viscous and inertial effects, so that even F" is
a finite-inertia force. Its A~%/2 scaling for small X is reminiscent
of Saffman’s lift force (38), but is obtained without decompos-
ing the domain into viscous and inertial regions (Materials and
Methods). Remarkably, the opposite limit 7* exactly asymptotes
to the result obtained from the purely inviscid formalism of ref.
19 as A — oo.

We now demonstrate that Eq. 2 is accurate over the entire
range of Stokes numbers by comparing our theory with indepen-
dent, large-scale, three-dimensional (3D) numerical simulations,
previously validated in a variety of streaming scenarios (39, 40).
Fig. 2 A-E illustrate the rich time-averaged flow (w) at different
A, while Fig. 2 G and I exemplify the expected confinement of
vorticity around the particle. The simulations also serve to jus-
tify our omission of an inertia-dominated outer region (Fig. 2 F
and H). In Fig. 34, we compare analytical and simulated particle
trajectories on both the oscillatory and slow time scales. The clas-
sical MR equation fails to capture any of the attraction observed
in DNS, while the present theory is in excellent agreement both
for the instantaneous motion and the rectified drift of the parti-
cle. Moreover, it succeeds over the entire range of A values; cf.
Fig. 3 B-E. In the figure, we also see that the inviscid formalism
of ref. 19 (dashed lines) gives a much too weak attraction, partic-
ularly for practically relevant A ~ 1. This is an intuitive outcome
of taking viscosity into account, as the Stokes boundary layer (cf.
Fig. 2 G and 1) effectively increases particle size, so that forces
scaling with particle size (cf. Eq. 1) become larger. Fig. 3 also
illustrates the great benefit of the analytical theory Eq. 9, as indi-
vidual DNSs incur large computational costs of up to ~ 100,000
core-hours on the Stampede?2 supercomputer (S Appendix).

Fig. 4 summarizes the comparison between theory and sim-
ulations: Time-averaged DNS trajectories (beyond an initial
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0.025 103

Fig. 2. Flow-field simulation results. (A-E) Streamlines of the steady flow (w) = (w“’) (Stokes streamfunction isolines) for different \; color bar is velocity
magnitude in units of eU™. (F and H) The magnitude of Fourier-transformed quantities (indicated by tildes) evaluated at the driving frequency w demon-
strates that the flow field has no outer, inertia-dominated region. The ratio between oscillatory disturbance flow advective force f(w) and the Fourier
component of the unsteady inertia 8w“)/8t remains small away from the bubble. (G and /) The Fourier component of vorticity at w is confined to the
oscillatory Stokes layer thickness §s (orange-dashed circle) around the particle.

transient—see SI Appendix for details) for different values of
A were fitted to [9] to determine the dimensionless force F.
Our analytical predictions are in quantitative agreement with
DNS across the range of ), exhibiting an average error of ~ 7%.
This remaining discrepancy is attributed to effects of the nar-
rowing distance between particle and bubble interface, which
modifies the integration volume in Eq. 6e and also compromises

the assumption of purely radial flow at the bubble interface, due
to the particle disturbance flow.

Discussion

The data presented above demonstrate that particle motion can
be described quantitatively by the forcing terms of Eqs. 7 and 8. It
is furthermore important to show that other hydrodynamic force

0.0002
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Fig. 3. Comparison of theoretical (red) and simulated (blue) particle dynamics (radial displacements). (A) Full unsteady dynamics (solid lines) from DNS and
theory Eqg. 13 and time-averaged dynamics (dashed lines; theory uses Eq. 9 with Eq. 2). The classical MR equation solutions (green) fail to even qualitatively
capture the particle attraction to the bubble. (B-E) Steady dynamics from the uniformly valid asymptotic theory agrees with DNS for the entire range of A
values. Dashed lines show the inviscid-limit theory, demonstrating significant quantitative discrepancies, even for the largest .
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Fig. 4. Comparison of the overall inertial force magnitude F in theory
(lines) and simulation (symbols), for various X\ and initial particle positions
rp(0). The uniformly valid expression (red) is extremely close to the full
solution (orange) and in excellent agreement with all DNS data, while the
inviscid theory (black dashed) severely underestimates the forces.

contributions will not alter or overwhelm the effects described
here.

Absence of Outer-Flow Inertia. Often, the evaluation of forces on
particles in a flow is complicated by the transition between a
viscous-dominated inner flow volume (near the particle) and
an inertia-dominated outer volume, necessitating an asymptotic
matching of the two limits [such as for the Oseen (2) and Saffman
(38) problems]. The present formalism, however, only employs
an inner-solution expansion and still obtains accurate predic-
tions (see also ref. 5, where it is shown that such an expansion
is successful, even up to Re, ~ 10). This behavior can be ratio-
nalized by invoking the analysis of Lovalenti and Brady (2), who
showed that an outer region is not present when the charac-
teristic unsteady time scale w™" is shorter than the convective
inertial time scale v//( U*w®)?, where w(®) is the dimensionless
velocity scale of the fluid, as measured in the particle reference
frame. For density-matched particles, w(® = O(«a), so that this
criterion reduces to €2\ < 1, requiring the oscillation amplitude
of the flow to be smaller than §sa !, which is easily satisfied
in most experimental situations. More directly, the Lovalenti—
Brady criterion relies on the magnitude of oscillatory inertia in
the disturbance flow dw") /9t being much larger than that of the
advective term f. DNS verifies that this relation holds for the
entire range of A treated here (Fig. 2 F and H). In flows that
do not satisfy this condition, our theory can be applied to both
the inner and outer regions, with matching expansions in particle
Reynolds number. As a separate effect, outer flow inertia due to
the slow (steady) motion of the particle will be present, but only
results in O(e) corrections to the Stokes drag.

Comparison with Other Hydrodynamic Forces. We have investi-
gated the case of radially symmetric flow specifically because
it isolates the inertial forces reported here as the only effect,
allowing us to assess the accuracy of the theory. In more gen-
eral flow situations, other forces will compete with Fr,, and
we estimate their relative magnitude here to show that in many
practical scenarios, they will not overwhelm the contributions
identified here. If the particle density p, does not match p, a
density contrast force (19) is induced, generalizing acoustoflu-
idic SRFs. This force is included within our general formalism,
but in order for it to exceed Fr, the density contrast needs to ful-
fill p,/p—123(ay,/rp)*(1+2/V\). Appreciable forces only act
when r, 2 a, and if X is not very small; thus, p,/p—1 2 0.3 for
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typical geometries characterized by o < 0.2. In most microfluidic,
and certainly in biomedical, applications, the density contrast
is far less: Even at 5% density difference (e.g., for polystyrene
particles), Fr. is 5 to 30 times stronger than the density con-
trast force for 0.5 < X < 5. Other forces result from steady flows:
Oscillation of an ap-sized object will generically induce steady-
streaming flow at speed ~ ¢”a, U*, and it may have transverse
gradients of scale a, (in addition to radial gradients). This sit-
uation induces a Saffman lift force Ls (38) for particles with
finite slip velocity Vi, again because of density mismatch (2,
19). Augmenting our theory with an outer-flow inertial region
would reproduce this force.” Lg and Fr, are of equal magnitude
if Vi~ 5a2(4.142v/A)U*. In realistic settings, Vs would need
to exceed U*, implying that the steady flow would overwhelm
the oscillatory motion, defeating the purpose of oscillatory-flow
microfluidics. Lastly, flows with finite VU give rise to Faxén
terms in added mass and drag. However, the oscillatory flows
discussed here are (almost) potential flows, as shown above, so
that the leading-order effect of Faxén terms comes from steady-
flow curvature and provides only an O(a?) correction to the
steady-flow Stokes drag.

Conclusions. We thus conclude that the inertial force terms
described here are not a small correction, but the dominant
effect in many commonplace oscillating microfluidics applica-
tions, in particular for nearly density-matched particles, the most
relevant case in medicine and health contexts, where biologi-
cal materials are primary targets. These forces are ubiquitous in
viscous flows with finite inertial effects from oscillatory driving;
they stem from flow gradients and curvatures; they are attractive
toward the oscillating object under mild assumptions; and they
are much stronger than inviscid forces. They lead to significant
displacements of cell-sized particles (1 — 10pm) over millisecond
time scales, making them a promising tool for precision manip-
ulation strategies. Further, our analysis shows that a surprisingly
simple expression accurately predicts particle motion, as quanti-
tatively confirmed against first-principle, large-scale DNSs. The
theory highlights the immense reduction in computational effort
between DNS and an explicit analytical theory and, as a gener-
alization of the Maxey—Riley formalism, is applicable to a wide
variety of flow situations.

Materials and Methods

General Solutions and the Reciprocal Theorem. The leading-order oscillatory
disturbance flow field wg” is obtained by inserting Eq. 5 into the leading
order of Eq. 4 and can be formally expressed as a series solution (41, 42).

wi’ = Mp-us— Mg - (r-E)— Mo - (rr:G)+ . .., [11]

where Us = Up, _U"Po is the slip velocity and Mpgo(r, A) are spatially
dependent mobility tensors independent of the particular background
flow—SI Appendix gives explicit expressions in the case of harmonic oscilla-
tory flows, though the formalism applies for general flows. All information
about the specific background flow is contained in the constant quantities
us, E, and G. The O(Re,) flow field w{” does not need to be com-
puted explicitly; instead, we use a reciprocal theorem. Denoting Laplace-
transformed quantities by hats, application of the divergence theorem
results in the following symmetry relation:

?{(Wﬁ” & i 6_21)) . mdS:/ {V . (W(11) . 6'/) -V (':l/ . &21))} dav.
S v

[12]
As shown in S/ Appendix, the above expression yields the O(Rep)
force on the particle captured by Eg. 6e. We note that the compu-
tation of the volume integral simplifies considerably: The integrand is
proportional to fy, in which only certain products are nonvanishing
when the angular integration around the particle is performed. For

TWe thank H. A. Stone, J. F. Brady, and P. M. Lovalenti for pointing this out.
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instance, the first term in fg is (l_lfllpo)~VW81):(7US+I'~E+I'I':G)-

V (Mp-us— Mg - (r-E)— Mo - (rr: G)). Due to the alternating symmetry
of terms in the background flow and, consequently, wg), only products
of adjacent terms survive integration, while, e.g., a term involving us -

V (Mp - u) vanishes after volume integration.

Oscillatory Equation of Motion in Radial Flow. For the special case of the
bubble executing pure breathing oscillations with the radial flow field
U =sint/r?, itisstraightforward to compute E : G - e, = — 18 sin? t/r;, where
rp(t) is the instantaneous particle position.

Using [6], [7], [8], and noting aRe, = 3€e), the nondimensional equation
of motion for ry(t) of a neutrally buoyant particle explicitly reads:

2 in2 in2
d“rp —ex (cost 5 Sin t>7aezaz185|n t]__(o)

a2 2 e r3 3 r
int d 22 18sin® ¢
+ % _ 9% _ 762(12&;1(% , [13]
r3 dt 3 r

where the first line on the right-hand side represents contributions from Féo)
and F?, while the first and second terms in brackets represent F{” and F{",
respectively. Note that, for neutrally buoyant particles, the time-periodic
character of the flow precludes memory terms that would otherwise emerge
from the inverse Laplace transforms (2, 10, 43).

Time-Scale Separation and Time Averaging. Assuming ¢ < 1, we introduce
the slow time T = €%t, in addition to the fast time t. Using the following
transformations

rp(t) = rp(t, T), [14a]
d & ,0

4.0, 290 14b
gt et T ar (14b]
a? o , & 4 02

LA L A 14

a2 ae T Grar TC o [14c]

we seek a perturbation solution in e of the general form ry(t, T) = rp(T) +
efp(t, T)+ezfp(t, T)+ ... and separate orders in Eq. 13. The procedure is
outlined in ref. 19 and results in a leading-order equation for rp(T) given
by Eq. 9, dependent on the slow time scale only (the scale t being averaged
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out). Higher-order corrections to the irreversible, rectified particle motion
only occur at O(e*).

Simulation Method and Numerical Implementation. Here, we briefly describe
the governing equations and numerical technique used in our simulations.
We consider two spherical bodies (an oscillating microbubble and a neutrally
buoyant particle) immersed in an unbounded domain of incompressible vis-
cous fluid. We denote the computational domain as Q = Q; U Qg, where Q¢
is the fluid domain and Qg =, U Q, is the domain in which the bubble
(Qp) and particle () reside, and denote the interface between the fluid
and the bodies as 9Qg. The flow is then described by the incompressible
Navier-Stokes equations

ou
V.u=0 —
Y ot "

(u~V)u=—%Vp+uV2u xeQ\ g, [15]
where p, p, u, and v are the fluid density, pressure, velocity, and kinematic
viscosity, respectively. We impose the no-slip boundary condition u=ug at
982, where ug is the body velocity, and feedback from the fluid to the body
is described by Newton’s equation of motion. The system of equations is
solved in velocity—vorticity form by using the remeshed vortex method com-
bined with Brinkmann penalization and a projection approach (44). This
method has been extensively validated across a range of fluid-structure
interaction problems, from flow past bluff bodies to biological swimming
(44-48). Recently, the accuracy of this method has been demonstrated
in rectified flow contexts as well, capturing steady streaming responses
from arbitrary shapes in two dimensions and 3D (39, 40). More details
on method implementation and simulation techniques can be found in
SI Appendix.

Data Availability. All study data are included in the article and/or S/
Appendix.
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Supporting Information Text
1. Theoretical Formalism

In order to systematically account for the inertial forces on a sphere of radius a, centered at r, moving with with velocity u,
(neglecting effects of rotation) and exposed to a known (lab-frame) background undisturbed flow @, we split the Navier—Stokes
equations that govern the flow field into an undisturbed flow w® = @ — u,, and a disturbance flow w™® (we adopt the same
notation as (1)). Then, in a particle-centered (moving) coordinate system, we have

T2 @ _ vy —z) 0w 0) . gy ®
w —Vp' =3\ 5 + Rep (w -Vw ) , [1a]
25 (1) _gy 0w = M 4 w® . Ui+ w® . T
= D ¥4 )
Viw'’ — Vp 3)\7+Re (U—up) - Vw'’/ +w"’ - Va+w"’ - Vw [1b]
v-w® =0, v.w" =0, [1c]
w® =u,—a@ onr=1 and w =0 asr— oo, [1d]

where Re, = U”a,/v is the particle Reynolds number. Quantities in these equations are non-dimensionalized by scaling
velocities with U*, lengths with a,,, pressure with uU*/a,, and time by w™?.

The force contribution from the undisturbed flow is F(*) = (Fs/67) fs n-ods, like in the original MaxeyRiley (MR)

formalism (1), where 0@ = —pOT1 + Vw©® + (V'w(o))T is the stress tensor associated with the undisturbed flow field
w(o), and Fs/6m = vpapU™ is the Stokes drag scale. The force contribution at the disturbance flow order is given by
FY = (Fs/67) fs n-ocMds, where oV = —pWI1 4 vw® + (Vw(l))T is the stress tensor associated with the disturbance
flow field w™. The corresponding (dimensional) equation of motion for the particle then reads
dU
my—2 =F 4 pO, [2]
dt
Note that everything up to this point is exact and no assumptions have been made. MR (1) make the unsteady Stokes flow
approximation in Eq. (1b) by setting Re, = 0, and compute FO without explicitly evaluating the disturbance flow, using a
symmetry relation. While this assumption is plausible in many traditional microfluidic flow situations, fast oscillatory particle
motion can give rise to large disturbance flow gradients so that the inertial terms on the RHS of Eq. (1b) are not necessarily
negligible compared to the viscous diffusion term (typically Re, ~ O(1), as in the experiment described in Fig. 1 of the main
text).

1

A. Small Re, expansion. In order to make analytical progress, following (2-4), we expand w™®, p®, r,, u, and ¢ (and

consequently F(l)) in a regular asymptotic expansion for small Re,,

w® = wé” + Rep w?) +..., [3a]

p = pg) + Rep pgl) + ..., [3b]

rp =rp, +Reprp, + .00, [3c]

Up = Up, + Repup, + ..., [3d]

oM = O'ém + Rep 0'51) +..., [3e]

FO = F" + Re, F{V + ... (3]
The leading-order equations for (wél)7 pél)) are unsteady Stokes,

ngél) - Vpé1> = 3)\81;71{)1), [4a]

v-w(” =0, [4D)]

wi =upy —@ onr=1, [4c]

wél) =0 asr— 0. [4d]

We note that in the original derivation of MR (1), a symmetry relation was used at this order to compute F((]1> without explicitly
solving for wél). However, since we are interested in computing the force contribution at O(Re,), we need an explicit solution

for the leading-order disturbance flow 'w(()l). To obtain explicit results, as stated in the main text, we expand the background
flow field @ around the leading-order particle position rp, into spatial moments of alternating symmetry,

+r-E4+rr:G+..., [5}
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where E = (a,/Lr)Vily,, and G = §(a;/L%)VVi|r,, with gradient Lr and curvature L, length scales. As a consequence of
Eq. (5), the boundary condition Eq. (4¢) is also expanded around rp,, so that in the particle fixed coordinate system

: [6]

where we have retained the first three terms in the background flow velocity expansion. Owing to the linearity of the leading
order unsteady Stokes equation, the solution can generally be expressed as (5, 6)

(1) _ = = . _
wy = Uy, — A=y, —Uly,, ~r-E—-rr:G+... on r=1

w = Mp-u, - Mg (r-E) = Mo - (rr:G) + ..., 7

where Mp g,0(r, \) are spatially dependent mobility tensors. For oscillatory flows, they depend on the Stokes number .
More explicit forms of these tensors will be given below.
With the leading-order disturbance flow field known, the equations at O(Re,) are as follows,

Vi’ - vpl =v. ol = 3>\81;7§) + fo, [8a]
v.w! =0, (8]

w =u, onr=1, [8¢]

wﬁl) =0 asr— oo, [8d]

where fo = w(® -Vwél) + w(()1> Vw'® 4+ 'w(()l) -Vwél) is the (explicitly known) leading-order nonlinear forcing of the disturbance
flow. In order to compute the force at this order, we employ a reciprocal relation in the Laplace domain since the problem is
time-dependent and, for oscillatory flows, the Laplace transform is explicitly obtained.

B. Reciprocal theorem and test flow. A known test flow (denoted by primed quantities such as u’) is chosen around an oscillating
sphere such that it satisfies the following unsteady Stokes equation:

/
Vi —Vp =V-o = 3A%—‘;, [9a]
V-u' =0, [9b]
u=u(t)e onr=1, [9¢]
u=0 asr— oo, [9d]

where the unit vector e is chosen to coincide with the direction in which the force on the particle is desired. The solution to
this problem is of the same form as Eq. (7), but with only the first term, i.e.,

u =u'({t)Mp -e. [10]

Denoting Laplace transformed quantities by hats (e.g., @), one can write down the following symmetry relation using the
divergence theorem (cf. (1, 4, 7)):

f@gv & —ﬁ'-&g“)-mds:/ {v-(wg” &) —v-(ﬁ'.&g”)} av, [11]
S v

where m is the outward unit normal vector to the surface (pointing inward over the sphere surface), and & = Vii+ (V)" — pl.
Substituting boundary conditions from Eq. (8) and Eq. (9), and setting the volume equal to the fluid-filled domain, we obtain

ﬁ,&}f-/ (&’~m)dsfﬁ'e-/
S. S

p P

(a§1>-m)ds+/ (w§1>~&’)~md5—/ (@ -6'") . mds
S

Soo oo

:/ [usg”v(v.a’)fﬁ’-(v.&§1>)+vw§“:&uva’;&gn] v . 12]
\%

The third term on the LHS is 0 since the viscous test flow stress tensor decays to zero at infinity. Similarly, the integral in the
fourth term vanishes in the far field if viscous stresses dominate inertial terms, and also in the case of inviscid irrotational flows
(see (7, 8)). The third and fourth terms on the RHS also go to zero, owing to incompressibilty and symmetry of the stress
tensor:

val): 6 —vi' eV
=va' . (va +(va)!) —pv-al” —va' (Vo + (Vi) - pVv .o’ =0. [13]

The divergence of the hatted stress tensors in the remaining two terms of the RHS can be obtained by taking the Laplace

— —

transforms of Eq. (8) and Eq. (9) and using the property f'(t) = sf(t) — f(0), so that
V- & = st —u'(0), [14a]
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V-6 = xsl" — wM(0) + £ . [14D)]

Now, the force on the sphere at this order is given by Fgl) = fs (cril) -n)dS = — fs (o'g1> -m)dS, since m points inwards
P P

while n points outwards on the surface of the sphere. Assuming both flows start from rest, we have (cf. (7))

P

e —1 _ _ . 5" -n)dS — | @ -fodV + ORe?). 15
e Fjem M /sp(a & /V“ ’ (fer) -

Adding the force contribution from the previous order, the net force on the particle due to its disturbance flow reads

(D)

N F R (1) £(1) 2
i'e Fs/(6m) i'e (FO + Rep, Fy ) + O(Re,)
:/ (tipy — 1+ Rep 1y, ) -(&/-n)dS—Rep/ @' - fodV + O(Re?) [16a]
Sp v
i, —u .
— e FV = L5 / (pA)-(é"-n)dSAl/Rep/ o - fodV p + O(Re}), [16D)]
67 s, a’ U v

where we have used u, = up, + Repup, + (’)(Rei), and £7! denotes the inverse Laplace transform. The first term on the RHS
of Eq. (16b) is denoted as Fél) in the main text (and is the same as that obtained by MR), while the second term represents
the O(Re,) inertial force and is denoted as F{" in the main text.

2. Evaluation of the O(Re,) inertial force

In this section, we will explicitly evaluate the volume integral in Eq. (16b) representing the O(Re;) inertial force. This requires

obtaining fo from the leading-order oscillatory disturbance flow field wéw.

A. General solution to equation Eq. (4). We already remarked that, given the background flow field expansion in uniform, linear,

and quadratic parts around the particle, wél) is formally obtained as the linear combination Eq. (7). For harmonically oscillating,
axisymmetric background flows (i.e., (r) = {&,, ¢, 0} in the spherical particle coordinate system, with all components o e**),
general explicit expressions can be derived for the mobility tensors M p g.0, ensuring no-slip boundary conditions on the
sphere order-by-order. A procedure obtaining Mp is described in Landau—Lifshitz (5); the other tensors are determined
analogously. Using components in spherical coordinates, they read

2a(r)

200 0 w0 0 =200
Mp=1| o0 <« o, Mg=|0 %% o, Mo=| 0o 24 o, [17]
0 0 0 0 0 0 0 0 0
where
L e o —iB(r—1) ,
a(r) = R [ﬁ —3if+3-3e 1+ 267‘)} , [18a]
b(r) = m [B(=15+ B(8 — 60)) + 15i + 5~ "~V (8r(3 + ifr) — 33)] , [18b]

_ —3(105 4 B(B(—45 + B(B — 10i)) + 1054)) + 21~V (15 + Br(—pr(6 + ifr) + 15i))
- 3282(—3 + B(B — 34))r3 ’

[18c]

and B = \/—ia/(v/w) = v/—3i)\ is the complex oscillatory boundary layer thickness. We emphasize that these expressions
are the same for arbitrary axisymmetric oscillatory u. Accordingly, only the expansion coefficients us, E, and G contain
information about the particular flow.

Similarly, the solution to the unsteady test flow is obtained directly as

cos 6 _
u=Mp- |—sinf|e". [19]
0

It is understood everywhere that physical quantities are obtained by taking real parts of these complex functions.
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B. Evaluation of Fl(l). In order to compute the volume integral in Eq. (16b), we first note that only certain products in fo are
non-vanishing when the angular integration over 6 is performed. In particular, due to alternating symmetry of terms in the
background flow field expansion Eq. (5), and consequently in the leading order disturbance flow Eq. (7), only products of
adjacent terms survive. This is because, in the Taylor expansion of the background flow field, the first and third terms are
symmetric (u(—r) = u(r)) while the second one is anti-symmetric (u(—r) = —u(r)). For example, the first term in fo reads

. V) = (—us4+r-E+rr:G)-V(Mp -u,— Mg - (r-E)— Mo - (rr: G)), [20]

and the only terms that survive the angular integration are the symmetric ones (after a contraction with the symmetric test
flow u’), i.e.,

(mus4+rr:G) - V(Mg - (r-E)+(r-E)- VMp-us — Mo (rr: G)) . [21]

Furthermore, in this paper we restrict ourselves to the case of neutrally buoyant particles and consequently the slip velocity is
u; = 0. In summary, only the following terms in fy have non-trivial contributions to the volume integral:

fo=—(rr:G)- V(Mg -(r-E))—(r-E)- V(Mo - (rr: G))
— Mg (r-E) - Vier:G)— (Mo - (rr: G))-V(r-E)
+Mg-(r-E) - VMo -(rr:G))+ (Mo - (rr: G))- V(Mg - (r-E)). [22]

All information about the background flow field is contained in the constant tensors E and G, which are evaluated at the
particle position. If the particle is farther away from the surface of the oscillating object exciting the flow than the Stokes layer
thickness dg, it is exposed to a pure potential flow; this will be the case in the overwhelming majority of realistic scenarios. For
potential flows it can be shown that all non-zero terms of Eq. (22) are proportional to E : G. Choosing a test flow in direction
e, one obtains a surprisingly compact result for the e-component of the O(Re,) inertial force:

(1)
BN Lt D [ feav
Fs 6 u’ v

We have here applied the required Laplace transforms as well as a time average to extract the steady part of the force.
Performing the volume integral leaves a universal dimensionless function F()\), whose contributions stem from Mp g.0.
Explicitly, this function reads

E:G)-eFP0). [23]

CO\»&

FPO) = [%( — 7965003*/% — 3366361°/ + 3400517/ 4 59790A%/% 4 3312372 4 568)°

+ 14078X° + 97470A* — 109920X% — 646137X% — 648594) — 3220561/ A — 76545>

4 etmVA 352 <9 <7r(4410 + 2033i) — 2817610V g (72\5) + e(2+2i>ﬁ(5600 — 12600i)Ei ((73 - i)ﬁ)

— (2033 + 44102‘)62“5& ((—1 - i)ﬁ) + 62\5(5600 + 126004)Ei ((—3 + z’)\[’\) — (2033 — 44104)Ei ((—1 + i)ﬁ)
+e@raVA (12600 + 5600i)7 + e2iﬁ(4410 — 2033i)7 + e2\5(12600 - 5600i)7r) 216 <7r(4195 + 3982i)

— 280806 VA E; ( f) (3982 + 4195i)eV Ei ((71 - z’)ﬁ) (3982 — 41950)Ei ((71 + z’)ﬁ)
+ e%ﬁ(4195 - 3982i)7r> A*/2 4y <7r(241 +17144) + 720V E; ( 2f) (1714 + 2414)e 2V/A g ((—1 — i)ﬁ)

— (1714 — 2417)Ei ((71 + i)ﬁ) + 62i\/§(241 - 17141’)7r> AT/2 (120 + 120i) <7r (z +e Z\[) _ Vg ((71 - i)ﬁ)
+Ei ((—1 n i)ﬂ) ))\9/2 ~ (4 + 40) <7r (5“5(248 £ 1270) + (—127 — 248i)> + eV (127 — 248i)Ei ((—1 - i)ﬁ)

4 (248 — 1270)Ei ((—1 + i)\f,‘\) )Z\4 —(6+ 6i)( 20V (567 + 21344) + eIV (736 — 7364)Ei ( 2[)

+ eQiﬁ(2134 — 5674)Ei ((—1 - i)ﬁ) + (567 — 21344)Ei ((—1 + i)ﬁ) +(—2134 — 567i)7r> 23

+ (w(39033 1 250894) — 381504¢1+)V R ( 2v/A ) (25089 + 39033)¢*V *Ei ((71 - z’)ﬁ)
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— (25089 — 390334)Ei ((71 + z’)ﬁ) + eziﬁ(39033 - 25089z')7r> M 4 (315 + 3154) <e<2+2”\5n(420 + 601)

— (96 — 96i)e )V R (—2\5) + @20V (60 _ 4204)Ei ((—3 - i)ﬁ) (49 + 28i)e*V E ((—1 - z’)ﬁ)
+ ezﬁ(mo — 60i)Ei ((—3 + z’)ﬁ) + (28 + 49¢)Ei ((—1 + i)ﬁ) (60 4 420i)e Vg + (49 — 28i)7
+ 621"5(28 - 491')71') A+ 15120e‘5< —5ieV M 4 5302V L | 5 0420V g ((—3 i) ) +5¢VEi ( —3+1) )

Vg (—mﬁ) ) + 945 (771’ + 72V 2% Z160ie2Y M + 160ie 220V A% 4 160¢ <2+21>fE ( - \ﬁ)
+ 1602V Ei ((73 n z’)ﬁ) — 481 +V (72\5) —7ie? VAR ((71 - i)ﬁ) + TiEi ( 1+ \5) > ﬁ)]/
[15120\5 (845\3/ 2 4 320772 1 8X° + 6407 + T2\ + 36V/ A + 9) ] . [24]

Here A = (3/2)\ and Ei is the exponential integral function. We show below that this lengthy expression is approximated to
great accuracy by two simple terms.

We stress again here that the result is universal for any oscillatory potential flow; for the prototypical case of the volumetrically
oscillating bubble, (E : G) - e, = —9/r7, as noted in the Methods section.

C. Net inertial force. The time-averaged force contribution from the background flow at O(Rep) is of the same form as Eq. (23),

except that F(A) is replaced by the simple constant .7-"1(0) = £ (9). The two contributions Fl(l) and FI(O) can thus be simply
added. Transforming back to dimensional variables, we obtain the net time-averaged force on the particle as

Fr. = msa, (VU : VVU) F()), [25]

where F = .7-"1(1) + .7-—1(0) and my = 4mpal /3, as noted in the main text. This time-averaged inertial force on the particle is
derived for a background flow that is symmetric about an axis e passing through the center of the particle.

It was remarked above that the simple form of Eq. (25) is a consequence of the background flow being potential. This
can be backed up by symmetry arguments and dimensional analysis for an arbitrary oscillatory background flow that has a
harmonic scalar potential, U = V@ with V2@ = 0. Such a flow is in fact generic since the background flow vorticity decays
exponentially outside the Stokes boundary layer of the compact object driving the background flow. We are interested in a
time-averaged force on the particle that is (i) quadratic in the oscillation amplitude and (ii) involves contractions of the flow
gradient VU = VV and the flow curvature tensor VVU = VVV@. The only dimensionless parameter in the problem not
already specified by U is the Stokes number X. Collecting the above statements, the only way to construct the time-averaged
force (a vector) from the higher rank tensors VV @ and VV Vg is by their contraction VV@ : VVV@. All other combinations
are either of insufficient tensor rank or are identically zero (since V2@ = 0). See (10) for similar arguments for flows without
curvature. Including the correct dimensions, the time averaged force for any oscillatory potential background flow thus has the
form

Fr. = mya, (VV@: VVVE) F(A). [26]

Note that although the background flow is irrotational, the disturbance flow has a finite vorticity within the Stokes layer
around the particle. Under this general setting there is no requirement of axisymmetry of the background flow, so Eq. (25) as
well as (1) in the main text apply to the generic case of an oscillatory potential flow background, and with the same universal
function F(X).

3. Accuracy of the uniformly valid expression for 7

As stated in the main text, while the explicit functional form Eq. (24) of ]:1(1)()\) is rather lengthy, we Taylor expand in both
the viscously dominated limit (A — 0) and the inviscid limit (A — co) to obtain

9 3

4 “ 16\ 2x

+0(1), F=3+00/VN). [27]

3

We construct a uniformly valid solution by simply adding the two leading order results, yielding F(\) = % + 1% 5y In
Fig. S1(a), we plot the uniformly valid F (red curve) and the full theory represented by Eq. Eq. (24) (orange), along with the
viscous and inviscid limits denoted by dashed lines. Figure S1(b) shows that the relative error between the red and orange
curves is small (< 8%) for all A, even those far smaller or larger than practically relevant values.
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4. Fitting procedure to obtain F from DNS

The DNS outputs (unsteady) particle trajectories as a function of time, with an initial transient period when the particle starts
from rest before periodic motion is fully established. As shown in Fig. 3(a) of the main text, these oscillatory trajectories
were time-averaged to obtain the steady particle dynamics r,(T), which is a function of the slow time T = ¢*t. We fit these
trajectories to Eq. (9) in the main text with F as the fitting parameter in order to obtain the simulation points of Fig. 4 of
the main text. This was done in two ways: i) Taking a derivative with respect to time of the time-averaged trajectories from
simulations, one obtains F directly from Eq. (9) of the main text. ii) The explicit analytical solution to Eq. (9) of the main

text, namely, r,(T) = (rp(O) - 48042T/\]-')1/87 was fitted to the time-averaged trajectories from DNS using the method of least
squares over a time interval that excludes the period of initial transient behavior in simulations. We found that both these
strategies yielded virtually identical values for F, which are displayed in Fig.4 of the main text.

5. Simulation methods and details

In order to perform three dimensional flow—structure interaction simulations with deforming geometries, we use the remeshed
Vortex Method (rVM) described in (11). Here, we list our simulation methodology and parameters for completeness and
reproducibility, as well as convergence tests used to assess simulations accuracy.

A. Fluid-structure interaction. We briefly recap the governing equations and numerical method used for our simulation. We
consider incompressible viscous flows in an unbounded domain in which two density-matched spherical bodies (i.e. bubble and
particle) are immersed. We denote the computational domain as Q = Qf U Qp, where Qs is the fluid domain and Qp = Qp U Q,,
is the domain in which the bubble (1) and particle () reside, and denote the interface between the fluid and the bodies as
00p. Both the bubble and the particle are then represented by mollified characteristic functions x1(x) and xp(x), respectively,
on a regular Cartesian grid mesh such that x,(x) =1 for x € Qp, xp(x) = 1 for x € Qp, and x1(x) = xp(x) =0 for x € Q. In
order to avoid discontinuities, for each of the bodies, we smoothly blend the x values using the mollification function

d < —€m,
1+ L+ Lsin(r L)) |d| < em, [28]
d> €m,

x(d) =

== O

where d is the signed-distance to the body—fluid interface, and ey, is a user-defined smoothing parameter.
We then solve the incompressible Navier—Stokes equation eq. (29) in its velocity—vorticity form
Dw 2
V-u=0, Dt = (w-V)u+vVw+ dpenalV X (x(up —u)) x€Q [29]
where w is the vorticity field, u is the fluid velocity field, ug is the body velocity and v is the kinematic viscosity. Here
Apenal > 1 is the penalization parameter and Apena1V X (x(up — u)) is the Brinkmann penalization term used to approximate
the no-slip boundary condition (11). We note that while a bubble interface is a no-stress boundary condition instead of
no-slip, in case of a bubble oscillating in pure breathing mode, where tangential boundary conditions have no effect, the same
irrotational flow response results for an isolated bubble. The interface gradients of the mollification layer can, however, induce
low levels of spurious vorticity, which are explicitly removed from the fluid in our solver by smoothly blending the vorticity to
zero on the interface using a characteristic function analogous to (28). This ensures a consistent, streaming-free flow field and in
addition reduces coupling effects between the disturbance flow and the bubble interface, in line with the theoretical treatment.
In using this method, fluid velocity within a body is forced to approach the body velocity (i.e. u(x) = ug(x) for x € Qp).
The body velocity ug can be decomposed into its rigid components of motion and the body deformation velocity field as
up(x,t) = ur(t) + ur(x,t) + waet(x,t), where ur and ugr are rigid translational and rotational velocities, and uqer is the
(imposed) deformation velocity field. The body rigid velocity (as a result of action from the fluid) is obtained via a projection
approach (11) where ur and ug are computed through the conservation of momentum in the system. The imposed deformation
velocity field used to prescribe the bubble’s breathing mode is uger(x,t) = ﬁeabw sin(wt) for x € Qg, where 7,(t) is the
instantaneous bubble radius. This methodology based on remeshed vortex methods, penalization and projection has been
validated across a range of fluid—structure interaction problems involving both rigid and deformable bodies, from bluff body
flows to biological swimming (11-15). Recently, it has also been demonstrated in resolving the spatio-temporal scales related to
oscillatory flow problems, particularly in viscous streaming settings involving individual and multiple arbitrary-shaped bodies,
both in two and three dimensions (16, 17). For a more detailed description of the numerical method, we refer to (11).

B. Simulation details. We simulate both the bubble and the particle as spheres of radii a, = 0.01 and a, = 0.002, respectively
(so that ap/ap, = 0.2), and set the mollification smoothing parameter ey, = v/2Ax used in the characteristic function eq. (28),
where Az is the simulation grid size. The computational domain is initialized with a physical size of [—2,5.875] ay %
[—1.9125,1.9125] ap x [—1.9125,1.9125] ap. We then discretized the domain with a mesh of N = 560 x 272 x 272 nodes, resulting
in a uniform grid size of Az = 1.40625 x 10™* = 1.40625 x 10~ 2a; in each direction. The domain boundary conditions are set
to free-space (unbounded) boundary conditions so that u — 0 as x — co. We initialize the particle at [r,(0),0,0] and the
bubble at [0, 0, 0], both being at rest. While the particle is free to move as a result of its interaction with the fluid, we pin
the position of the bubble in place and set the bubble to oscillate in a pure volume (breathing) mode. This is achieved by
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T:Et)
Throughout this paper, we set € = 0.05 and w = 16m. The viscosity v is set based on A = ajw/(3v) and the simulation is
allowed to run until the particle’s steady velocity is achieved (typically 40-200 oscillation cycles, depending on A where larger A
require longer time for transient effects to vanish). Finally, we note that the bubble, particle and fluid are density-matched and

density is set to unity.

prescribing uqes(x,t) = eapw sin(wt) for x € Qg, so that the interface of the bubble moves with radial velocity eapw sin(wt).

C. Implementation and resources. The simulation algorithm is implemented in Fortan90 and relies on MPI for distributed
memory parallelism. The software relies on Parallel Particle Mesh library (PPM) (18) which provides a convenient abstraction
layer over MPI particle-mesh operations, mapping on processors, processor communication and load-balancing. The software
also uses FF'TW3 library for Poisson solves and HDF library for data output, visualization and post-processing. The simulations
performed in this paper typically run for 48-96 hours on 16 nodes, each with 64 threads, on the Stampede2 supercomputing
facility.

D. Resolution convergence test. It is important that we capture the different length scales involved in order to properly resolve
the physics at play. We first identify the different physical (bubble oscillations eap, particle oscillations, Stokes boundary
layer thickness ds) and numerical (mollification length e, = v/2Az) length scales in this problem. Taking these scales into
consideration, we then need to ensure that (i) the oscillations are properly resolved (i.e. Az < oscillation amplitudes) and (ii)
ds measured from the bubble interface is not embedded in or under-resolved relative to the mollification region (i.e. ds > €m).

We conduct a resolution convergence test where we run a series of separate simulations with increasing resolution (hence
decreasing Axz). We then track the particle’s trajectory (via center-to-center distance between bubble and particle) and
observe a convergence towards a fixed trajectory, beyond which decreasing the grid size further does not significantly affect the
results while requiring considerably larger computational cost. We illustrate the convergence behavior in Figure S2 for the
case of 7,(0) = 2 and A = 20, deliberately chosen from the larger A regime in the test cases explored in this paper so that
ds is thin (hence requiring finer Az to resolve). Here we note that a grid size of Az = 1.40625 x 1072 a;, provides a good
compromise between computational cost and accuracy as it resolves the physical and numerical length scales reasonably well,
effectively ensuring (i) Az is finer than oscillation amplitudes and (ii) ds > em. Therefore, throughout this paper, we use
Az = 1.40625 x 1072 qy for all our simulations.

E. Domain size convergence test. In order to perform the simulations within feasible computational costs while ensuring that
all the length scales involved are properly resolved (see section D), we adjust our simulation domain to a reasonable size such that
effects from domain boundaries do not affect the computed results. We perform a simple test by fixing Az = 2.8125 x 1072 q,
and explore the boundary effects for different domain sizes. The case of study here is r,(0) = 2 and A = 1 (hence a thick
ds that might interact with domain boundaries). We note that while a lower resolution is used here for exploration (see
section D), the ds is still resolved in the simulations (i.e. ds > €m) and the test still serves to demonstrate the effects from
domain boundaries. Figure S3 shows the time-averaged trajectories for different domain sizes 0.375 L, 0.5 L and L, where L =
[—4,11.75] ap x [—3.825,3.825] ap x [—3.825,3.825] a,. We observe that the particle trajectories do not change when doubling
the domain size from 0.5 L to L. Therefore, we use the domain size of [—2, 5.875] aj x [—1.9125,1.9125] ap x [—1.9125,1.9125] ap
for simulations conducted throughout this work.

6. Comparison with experimental data

The trajectory plotted in Fig. 1(b) of the main text was obtained directly from our own experiments by tracking a neutrally
buoyant particle of radius 10um transported past an oscillating cylindrical bubble. The particle experiences an attractive force
towards the bubble leading to a sizeable displacement across fluid streamlines (towards the bottom channel wall) that is a
substantial fraction of the particle size. This observation is in direct contradiction to existing theories like acoustic radiation
forces (19-30), which depend crucially on contrasts of density or compressibility between the particle and its surrounding fluid
and, thus, predict no attraction at all or a much too weak effect.

We have refrained from presenting a direct comparison to theory in the main text, because a rigorous modeling on a par
with the formalism we present requires additional elements: (a) the background flow field in experiment is a superposition of a
channel transport flow and a flow field resulting from a complicated bubble oscillation combining volume and shape modes (cf.
(31)), whose amplitudes and phases are not easy to measure with great accuracy; (b) by nature of this background flow, the
particle’s trajectory approaches the bubble quite closely, necessitating the incorporation of boundary effects, i.e., taking into
account the location of the bubble surface as a fluid boundary.

Our reciprocal-theorem-based approach can, in principle, be generalized to any time-dependent background flow as well
as adapted to include the effect of (channel) walls and/or boundaries (as detailed in Sec. 1). However, providing a theory
prediction for this experimental case to the same degree of systematic detail as the current manuscript would lead to a much
more technical formalism, obscuring the newly derived inertial force in its closed form.

Nonetheless, we can attempt an approximate modeling combining the flow field approximation of (31), the lubrication
repulsion of (32, 33) (the leading boundary effect), and the force computation of the present manuscript (i.e., modeling the
radial component of inertial force as dominant over any tangential force component present in the experimental flow). While
the resulting trajectory does not show point-by-point agreement with experiment, the eventual particle displacement, perhaps
the most relevant quantity here, is of very similar magnitude (3.4um compared to the experimental 2.8um). Conversely,
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a computation without the attractive inertial force results in no displacement at all (Fig. S4). We caution that while this
agreement is encouraging, because of the approximations it should not be taken as a quantitative test of the rigorous derivation
and elucidation of the inertial force in the main paper. Future work will carefully incorporate the additional effects of flow field
complexity and boundaries, further generalizing the theory in a systematic way.
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Fig. S1. (a) Logarithmic plot of the overall inertial force magnitude F(\): the uniformly valid expression (red) closely tracks the full solution (orange) while the inviscid theory
(gray dashed) severely underestimates the inertial force even for moderately large A. (b) The magnitude of the percentage error between the uniformly valid and full solutions is
small throughout the entire range of X, with a maximum error of ~ 8% where the two limits blend, as one would expect.
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Fig. S2. Resolution convergence: Trajectory of particle for simulations with different Az for the case of 7, (0) = 2 and A = 20.
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Fig. S3. Domain convergence: Trajectory of particle for simulations with different domain size for the case of r, (0) = 2and A = 1.
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Fig. S4. A particle trajectory computed using the current uniformly valid theory for radial inertial force combined with the streaming and transport flow fields around a cylindrical
bubble shows a displacement downwards (attraction to the bubble, inset) consistent with the experimental observation of Fig.1b of the manuscript (red line and red symbols). A
computation without the newly introduced inertial force yields no significant displacement (black line and gray symbols). The parameters reflect those of the experiment in
Fig.1b, and the final displacement of the particle where it leaves the field of view is 3.41m, close to the mean of 2.8 um observed in experiment.
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